曲線
是平面內(nèi)與定點
和定直線
的距離的積等于
的點的軌跡.給出下列四個結(jié)論:
①曲線
過坐標(biāo)原點;
②曲線
關(guān)于
軸對稱;
③曲線
與
軸有
個交點;
④若點
在曲線
上,則
的最小值為
.
其中,所有正確結(jié)論的序號是___________.
試題分析:設(shè)
曲線
上任意一點,則依題意可得
,將原點代入驗證,方程成立,說明曲線
過坐標(biāo)原點,故①正確;把方程中的x不變,y被-y 代換,方程不變,說明曲線
關(guān)于
軸對稱,故②正確;將
代入方程
可得
,即方程只有一個根,所以③不正確;定點
和定直線
可看做是拋物線
的焦點和準(zhǔn)線,設(shè)點
是拋物線上的任意一點,由拋物線的定義可知點
到焦點和準(zhǔn)線的距離相等,要使
的最小值畫圖分析可知點
應(yīng)在拋物線
的內(nèi)側(cè)且
,當(dāng)點
在
上時
取得最小值,此時
,點
到直線
的距離為
,所以
,解得
,此時
。故④正確。綜上可得正確的是①②④。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
拋物線
,其準(zhǔn)線方程為
,過準(zhǔn)線與
軸的交點
做直線
交拋物線于
兩點.
(1)若點
為
中點,求直線
的方程;
(2)設(shè)拋物線的焦點為
,當(dāng)
時,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
(
)過點
,且橢圓
的離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若動點
在直線
上,過
作直線交橢圓
于
兩點,且
為線段
中點,再過
作直線
.證明:直線
恒過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點
,
,動點
滿足
.
(1)求動點
的軌跡
的方程;
(2)在直線
:
上取一點
,過點
作軌跡
的兩條切線,切點分別為
.問:是否存在點
,使得直線
//
?若存在,求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
.
(1)橢圓
的短軸端點分別為
(如圖),直線
分別與橢圓
交于
兩點,其中點
滿足
,且
.
①證明直線
與
軸交點的位置與
無關(guān);
②若∆
面積是∆
面積的5倍,求
的值;
(2)若圓
:
.
是過點
的兩條互相垂直的直線,其中
交圓
于
、
兩點,
交橢圓
于另一點
.求
面積取最大值時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
A(
x1,
y1),
B(
x2,
y2)是橢圓
C:
=1(
a>
b>0)上兩點,已知
m=
,
n=
,若
m·
n=0且橢圓的離心率
e=
,短軸長為2,
O為坐標(biāo)原點.
(1)求橢圓的方程;
(2)試問△
AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
,
分別為雙曲線
,
的左、右焦點,若在右支上存在點
,使得點
到直線
的距離為
,則該雙曲線的離心率的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
內(nèi)有一點
,過點
的弦恰好以
為中點,那么這條弦所在直線的斜率為
,直線方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
正方體
中,
為側(cè)面
所在平面上的一個動點,且
到平面
的距離是
到直線
距離的
倍,則動點
的軌跡為( )
查看答案和解析>>