11.“0<α<π”是“x2+y2cosα=1表示橢圓”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義以及橢圓的定義判定即可.

解答 解:若0<α<π,則-1<cosα<1,x2+y2cosα=1不一定表示橢圓,不是充分條件,
若x2+y2cosα=1表示橢圓,則0<cosα<1,推不出0<α<π,
故“0<α<π”是“x2+y2cosα=1表示橢圓”的既不充分也不必要條件,
故選:D.

點(diǎn)評(píng) 本題考查了充分必要條件,考查橢圓的定義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.平面四邊形ABCD中,$∠A={90°},∠B=∠D={60°},AB=\sqrt{3},CD=1$,則AD=(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)滿(mǎn)足:f(x)=2f(2x-1)-3x2+2,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E、F、G分別是AA1、A1B1、A1D1的中點(diǎn).
(Ⅰ)求證:平面EFG∥平面BC1D;
(Ⅱ)在線段BD上是否存在點(diǎn)H,使得EH⊥平面BC1D?若存在,求線段BH的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在所有的兩位數(shù)中,個(gè)位數(shù)字大于十位數(shù)字的兩位數(shù)共有( 。﹤(gè).
A.50B.45C.36D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,角A,B,C對(duì)應(yīng)的邊分別為a,b,c,若a,b,c等比,則下列結(jié)論一定正確的是( 。
A.A是銳角B.B是銳角
C.C是銳角D.△ABC是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ex,g(x)=ax+b(a,b∈R).
(1)設(shè)h(x)=xg(x)+1.
①若a≠0,則a,b滿(mǎn)足什么條件時(shí),曲線y=f(x)與y=h(x)在x=0處總有相同的切線?
②當(dāng)a=1時(shí),求函數(shù)F(x)=$\frac{h(x)}{f(x)}$單調(diào)區(qū)間;
(2)若集合{x|f(x)<g(x)}為空集,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)已知函數(shù)f(x)=$\frac{1+lnx}{x}$,當(dāng)x≥1時(shí),不等式f(x)≥$\frac{k}{x+1}$恒成立,求實(shí)數(shù)k的取值范圍;
(2)已知不等式f(x)=ln(x+1)-ax+ex.如果對(duì)任意x≥0,f(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=ex+ax+b在點(diǎn)(0,f(0))處的切線方程為x+y+1=0.
(1)求a,b值,并求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)x≥0時(shí),f(x)>x2-9.

查看答案和解析>>

同步練習(xí)冊(cè)答案