【題目】在等差數(shù)列 中, ,其前 項和為 ,等比數(shù)列 的各項均為正數(shù), ,公比為 ,且 , .
(Ⅰ)求 與 .
(Ⅱ)設數(shù)列 滿足 ,求 的前 項和 .
【答案】解:(Ⅰ)設等差數(shù)列公差為 ,
由題目列出各方程:
即 ,
即 ,
得 ,解出 , ,
∴ ,
.
(Ⅱ)∵
,
.
.
【解析】(1)根據(jù)等差數(shù)列和等比數(shù)列的性質,聯(lián)立兩等式,解出數(shù)列{an}的公差,數(shù)列{bn}的公比,即可得到兩個數(shù)列的通項公式。
(2)先用前n項和公式求出Sn , 即得cn , 運用裂項相消法將cn變形,然后再進行求和。
【考點精析】通過靈活運用等差數(shù)列的前n項和公式和等比數(shù)列的定義,掌握前n項和公式:;如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】某商場經(jīng)營某種商品,在某周內獲純利(元)與該周每天銷售這種商品數(shù)之間的一組數(shù)據(jù)關系如表:
(I)畫出散點圖;
(II)求純利與每天銷售件數(shù)之間的回歸直線方程;
(III)估計當每天銷售的件數(shù)為12件時,每周內獲得的純利為多少?
附注:
,,,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓 過定點 ,且在定圓 的內部與其相內切.
(1)求動圓圓心 的軌跡方程 ;
(2)直線 與 交于 兩點,與圓 交于 兩點,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若平面點集 滿足:任意點 ,存在 ,都有 ,則稱該點集 是“ 階聚合”點集。現(xiàn)有四個命題:
①若 ,則存在正數(shù) ,使得 是“ 階聚合”點集;
②若 ,則 是“ 階聚合”點集;
③若 ,則 是“2階聚合”點集;
④若 是“ 階聚合”點集,則 的取值范圍是 .
其中正確命題的序號為( )
A.①④
B.②③
C.①②
D.③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,點在直線上.數(shù)列滿足
,,且其前9項和為153.
(Ⅰ)求數(shù)列,的通項公式;
(Ⅱ)設,數(shù)列的前項和為,求使不等式對一切都成立的最大正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題 “存在 ”,命題 :“曲線 表示焦點在 軸上的橢圓”,命題 “曲線 表示雙曲線”
(1)若“ 且 ”是真命題,求實數(shù) 的取值范圍;
(2)若 是 的必要不充分條件,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線 的焦點為 ,其準線與 軸交于點 ,過 作斜率為 的直線 與拋物線交于 兩點,弦 的中點為 的垂直平分線與 軸交于 .
(1)求 的取值范圍;
(2)求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com