【題目】某淘寶商城在2017年前7個(gè)月的銷售額 (單位:萬元)的數(shù)據(jù)如下表,已知具有較好的線性關(guān)系.

1關(guān)于的線性回歸方程;

2分析該淘寶商城2017年前7個(gè)月的銷售額的變化情況,并預(yù)測(cè)該商城8月份的銷售額.

:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

, .

【答案】(1).(2)126萬元.

【解析】試題分析:(1)根據(jù)所給的數(shù)據(jù),利用最小二乘法可得橫標(biāo)和縱標(biāo)的平均數(shù),橫標(biāo)和縱標(biāo)的積的和,與橫標(biāo)的平方和,代入公式求出的值,再求出的值,寫出線性回歸方程.
(2)根據(jù)(1)求出的線性回歸方程,代入所給的的值,預(yù)測(cè)預(yù)測(cè)該商城8月份的銷售額.

試題解析:(1)由所給數(shù)據(jù)計(jì)算得,

,

.

所求回歸方程為.

(2)由(1)知, ,故前7個(gè)月該淘寶商城月銷售量逐月增加,平均每月增加10萬.

,代入(1)中的回歸方程, .

故預(yù)測(cè)該商城8月份的銷售額為126萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;

II)解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量m (sin ,1), =(1, cos ),函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)若f(α﹣ )= ,求f(2α+ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,
(I)求 的單調(diào)區(qū)間;
(II)若對(duì)任意的 ,都有 ,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】研究函數(shù)fx)= 的性質(zhì),完成下面兩個(gè)問題:
①將f(2),f(3),f(5)按從小到大排列為;
②函數(shù)gx)= x> 0)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 經(jīng)過點(diǎn) ,其離心率 .
(Ⅰ)求橢圓 的方程;
(Ⅱ)設(shè)動(dòng)直線 與橢圓 相切,切點(diǎn)為 ,且 與直線 相交于點(diǎn)
試問:在 軸上是否存在一定點(diǎn),使得以 為直徑的圓恒過該定點(diǎn)?若存在,
求出該點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐 的底面 為正方形, ⊥底面 , 分別是 的中點(diǎn), .

(Ⅰ)求證 ∥平面
(Ⅱ)求直線 與平面 所成的角;
(Ⅲ)求四棱錐 的外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,且經(jīng)過點(diǎn) 是橢圓的左、右焦點(diǎn).
(1)求橢圓 的方程;
(2)點(diǎn) 在橢圓上運(yùn)動(dòng),求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=|ax﹣1|.
(Ⅰ)若f(x)≤2的解集為[﹣6,2],求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)a=2時(shí),若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案