在等比數(shù)列{an}中,a1=1,公比|q|≠1.若am=a1a2a3a4a5,則m=( 。
A、9B、10C、11D、12
考點(diǎn):等比數(shù)列的性質(zhì),等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等比數(shù)列的性質(zhì)得a1•a5=a2•a4=a32,結(jié)合條件和等比數(shù)列的通項(xiàng)公式列出方程,求出m的值.
解答: 解:根據(jù)等比數(shù)列的性質(zhì)得,a1•a5=a2•a4=a32,
又am=a1a2a3a4a5,所以am=a35
因?yàn)?span id="qtskyqk" class="MathJye">am=a1qm-1=qm-1,a3=a1q2=q2
所以qm-1=(q25,所以m-1=10,即m=11,
故選:C.
點(diǎn)評:本題考查等比數(shù)列的性質(zhì)、通項(xiàng)公式的靈活應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記f(n)為自然數(shù)n的個(gè)位數(shù)字,an=f(n2)-f(n).則a1+a2+a3+…+a2016的值為(  )
A、2B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+y2=1,若此橢圓上存在不同的兩點(diǎn)A、B關(guān)于直線y=2x+m對稱,則實(shí)數(shù)m的取值范圍是( 。
A、(-
3
3
2
,
3
2
2
)
B、(-
3
2
2
,
3
2
2
C、(-
2
2
,
3
2
2
D、(-
3
2
2
,
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=ln(lnx)的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列4個(gè)命題:
①“如果x+y=0,則x、y互為相反數(shù)”的逆命題
②“如果x2+x-6≥0,則x>2”的否命題
③在△ABC中,“A>30°”是“sinA>
1
2
”的充分不必要條件
④“函數(shù)f(x)=tan(x+φ)為奇函數(shù)”的充要條件是“φ=kπ(k∈Z)”
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用函數(shù)單調(diào)性定義證明f(x)=x+
2
x
在x∈(0,
2
)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x+y≥1
y≤3
x-y≤1
,則z=
1
2
x+y
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入的x,y∈R,那么輸出的S的最大值為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
2
+y2=1的左右焦點(diǎn),過F1作傾斜角為45°的直線與橢圓相交于A,B兩點(diǎn).
(1)求△F2AB的周長
(2)求AB的長
(3)求△F2AB的面積.

查看答案和解析>>

同步練習(xí)冊答案