設△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若a=4,b=4
3
,A=30°,則C等于(  )
A、90°
B、90°或 150°
C、90°或30°
D、60°或 120°
考點:正弦定理
專題:解三角形
分析:△ABC中,由余弦定理求得c的值,再根據(jù)正弦定理求得sinC的值,可得C的值.
解答: 解:△ABC中,由余弦定理可得 a2=b2+c2-2bc•cosA,即 16=48+c2-2×4
3
×c×
3
2

解得c=4,或c=8.
當c=4時,∵a=c,∴A=C=30°.
當c=8時,由正弦定理可得
4
sin30°
=
8
sinC
,解得sinC=1,∴C=90°.
綜上可得,C=90°或30°,
故選:C.
點評:本題主要考查正弦定理和余弦定理的應用,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知曲線f(x)=x2
(1)求曲線f(x)在(1,1)點處的切線l的方程;
(2)求由曲線f(x)、直線x=0和直線l所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AC=
3
2
,BC=
1
2
,A=30°,則B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若角α是第四象限角,則角
α
2
的終邊在
 
象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y2=2px(p>0)的焦點為F,已知點A,B為拋物線上的兩個動點,且滿足∠AFB=90°.過弦AB的中點M作拋物線準線的垂線MN,垂足為N,則
|
MN
|
|
AB
|
的最大值為( 。
A、
2
2
B、
3
2
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(a1,a2,a3),
b
=(b1,b2,b3),則
a1
b1
=
a2
b2
=
a3
b3
a
b
的( 。
A、既不充分也不必要條件
B、必要不充分條件
C、充要條件
D、充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=
x
x+1
在點(0,0)處的切線方程為( 。
A、y=-x
B、y=
1
2
x
C、y=x
D、y=2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是橢圓
x2
169
+
y2
144
=1
上一點,F(xiàn)1、F2是橢圓的焦點,若|PF1|等于4,則|PF2|等于( 。
A、22B、21C、20D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設關于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿足f(a)=
1
2
的a的值,并對此時的a值求y的最大值及對應x的集合.

查看答案和解析>>

同步練習冊答案