【題目】已知函數(shù).
()若是函數(shù)的一個(gè)極值點(diǎn),求實(shí)數(shù)的值.
()設(shè),當(dāng)時(shí),函數(shù)的圖象恒不在直線的上方,求實(shí)數(shù)的取值范圍.
【答案】();().
【解析】試題分析:
(1)由解得,注意要檢驗(yàn)此時(shí)2是極值點(diǎn);
(2)題意說(shuō)明在區(qū)間上的最大值,因此只要求出導(dǎo)數(shù),確定在區(qū)間上的單調(diào)性及最大值,解相應(yīng)的不等式可得所求范圍.
試題解析:
()由可得
,
∵是函數(shù)的一個(gè)極值點(diǎn),
∴,
∴,計(jì)算得出.
代入,
當(dāng)時(shí), ;
當(dāng)時(shí), ,
∴是的極值.
∴.
()當(dāng)時(shí),函數(shù)的圖象恒不在直線上方,
等價(jià)于, 恒成立,
即, 恒成立,
由()知, ,
令,得, ,
當(dāng)時(shí), ,
∴在單調(diào)減,
, 與矛盾,舍去.
當(dāng)時(shí), ,
在上單調(diào)遞減,在上單調(diào)遞增,
∴在或處取到,
, ,
∴只要,
計(jì)算得出.
當(dāng)時(shí), ,
在上單調(diào)增, ,符合題意,
∴實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知,().
(1)求證:數(shù)列為等比數(shù)列;
(2)若數(shù)列滿足:,.
① 求數(shù)列的通項(xiàng)公式;
② 是否存在正整數(shù)n,使得成立?若存在,求出所有n的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為數(shù)列的前項(xiàng)和,,,若關(guān)于正整數(shù)的不等式的解集中的整數(shù)解有兩個(gè),則正實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點(diǎn),G是EF的中點(diǎn),現(xiàn)在沿AE、AF及EF把這個(gè)正方形折成一個(gè)空間圖形,使B、C、D三點(diǎn)重合,重合后的點(diǎn)記為H,那么,在這個(gè)空間圖形中必有( 。
A. 所在平面B. 所在平面
C. 所在平面D. 所在平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市預(yù)測(cè)2000年到2004年人口總數(shù)與年份的關(guān)系如下表所示
年份200x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十)萬(wàn) | 5 | 7 | 8 | 11 | 19 |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),計(jì)算,用最小二乘法求出關(guān)于的線性回歸方程
(2) 據(jù)此估計(jì)2005年該城市人口總數(shù)。
(參考數(shù)值:0×5+1×7+2×8+3×11+4×19=132,
參考公式:用最小二乘法求線性回歸方程系數(shù)公式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】.已知函數(shù).
(1)求過(guò)點(diǎn)的圖象的切線方程;
(2)若函數(shù)存在兩個(gè)極值點(diǎn), ,求的取值范圍;
(3)當(dāng)時(shí),均有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在五面體中,四邊形為矩形, 為等邊三角形,且平面平面, .
(1)證明:平面平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com