已知圓(x+4)2+y2=25圓心為M1,(x-4)2+y2=1的圓心為M2,一動圓與這兩個圓都外切,求動圓圓心的軌跡方程.
分析:設動圓P的半徑為r,然后根據(jù)動圓與圓M1:(x+4)2+y2=25,⊙M2:,(x-4)2+y2=1都外切得|PF|=2+r、|PO|=1+r,再兩式相減消去參數(shù)r,則滿足雙曲線的定義,問題解決.
解答:解:設動圓的圓心為P,半徑為r,
而圓(x+4)2+y2=25的圓心為O(-4,0),半徑為5;
圓(x-4)2+y2=1的圓心為F(4,0),半徑為1.
依題意得|PM1|=5+r,|PM2|=1+r,
則|PM1|-|PM2|=(5+r)-(1+r)=4<|M1M2|,
所以點P的軌跡是雙曲線的右支.
且:a=2,c=4,b2=12
其方程是:
x2
4
-
y2
12
=1(x>0)
點評:本題主要考查雙曲線的定義.本題考查的知識點是圓的方程、橢圓的性質及橢圓與直線的關系,解題的關鍵是根據(jù)已知條件中未知圓與已知圓的位置關系,結合“圓的位置關系與半徑及圓心距的關系”,探究出動圓圓心P的軌跡,進而給出動圓圓心P的軌跡方程.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓(x+4)2+y2=25的圓心為M1,圓(x-4)2+y2=1的圓心為M2,一動圓與這兩個圓都外切.
(1)求動圓圓心P的軌跡方程;
(2)若過點M2的直線與(1)中所求軌跡有兩個交點A、B,求|AM1|•|BM1|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓(x-4)2+y2=a(a>0)上恰有四個點到直線x=-1的距離與到點(1,0)的距離相等,則實數(shù)a的取值范圍為( 。
A、12<a<16B、12<a<14C、10<a<16D、13<a<15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓(x+4)2+y2=25的圓心為M1,圓(x-4)2+y2=1的圓心為M2,一動圓與這兩個圓都外切.
(1)求圓心M1、M2的坐標以及兩圓的半徑;
(2)求動圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知圓(x+4)2+y2=25的圓心為M1,圓(x-4)2+y2=1的圓心為M2,一個動圓與這兩個圓都外切. 
(Ⅰ)求動圓圓心M的軌跡C的方程;
(Ⅱ)若經(jīng)過點M2的直線與(Ⅰ)中的軌跡C有兩個交點A、B,求|AM1|•|BM1|的最小值.

查看答案和解析>>

同步練習冊答案