在△ABC中,已知1+
tanA
tanB
=
2sinC
sinB

(1)求角A的大。
(2)當(dāng)sinC=3sinB時(shí),求tan(B-
π
3
)的值.
考點(diǎn):兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:(1)由條件根據(jù)同角三角函數(shù)的基本關(guān)系,求得cosA的值,可得A的值.
(2)當(dāng)sinC=3sinB時(shí),sin(
3
-B)=3sinB,求得tanB得知,可得tan(B-
π
3
)=
tanB-tan
π
3
1+tanBtan
π
3
 得知.
解答: 解:(1)△ABC中,已知1+
tanA
tanB
=
2sinC
sinB
,即 1+
sinAcosB
cosAsinB
=
2sinC
sinB
,即
sinAcosB+cosAsinB
sinBcosA
=
2sinC
sinB
,
求得cosA=
1
2
,∴A=
π
3

(2)當(dāng)sinC=3sinB時(shí),sin(
3
-B)=3sinB,即sin
3
cosB-cos
3
sinB=3sinB,即
3
2
cosB=
5
2
sinB,
求得tanB=
3
5
,
∴tan(B-
π
3
)=
tanB-tan
π
3
1+tanBtan
π
3
=-
3
2
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和差的正切公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,復(fù)數(shù)z1=1+2i,z2=3+4i,那么z1+z2=( 。
A、5+5iB、4+6i
C、10iD、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A點(diǎn)的初始位置位于數(shù)軸上的原點(diǎn),現(xiàn)對(duì)A點(diǎn)做如下移動(dòng):第1次從原點(diǎn)向右移動(dòng)1個(gè)單位長(zhǎng)度至B點(diǎn),第2次從B點(diǎn)向左移動(dòng)3個(gè)單位長(zhǎng)度至C點(diǎn),第3次從C點(diǎn)向右移動(dòng)6個(gè)單位長(zhǎng)度至D點(diǎn),第4次從D點(diǎn)向左移動(dòng)9個(gè)單位長(zhǎng)度至E點(diǎn),…,依此類推,這樣移動(dòng)解答:
①移動(dòng)5次后、6次后該點(diǎn)對(duì)應(yīng)的數(shù);
②分別求出移動(dòng)(2n-1)次和2n次后該點(diǎn)到原點(diǎn)的距離(n為正整數(shù))
③多少次后該點(diǎn)到原點(diǎn)的距離為2015?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x-alnx-2.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)a=1時(shí),不等式f(x)+(b+1)f′(x)<x-1對(duì)x>1恒成立,求正整數(shù)b的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,若三邊a,b,c依次成等比數(shù)列,且cosB=
3
4
,cos2A-cos2C=2sinAsinC,
(1)判斷△ABC的形狀;
(2)若
BA
BC
=
3
2
,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)的通徑為BC,準(zhǔn)線l與對(duì)稱軸交于A,且F為拋物線的焦點(diǎn)
(1)求證:△ABC為等腰直角三角形;
(2)若p=
2
+1,求△ABC內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司舉辦一次募捐愛心演出,有1000人參加,每人一張門票,每張100元.在演出過程中穿插抽獎(jiǎng)活動(dòng),第一輪抽獎(jiǎng)從這1000張票根中隨機(jī)抽取10張,其持有者獲得價(jià)值1000元的獎(jiǎng)品,并參加第二輪抽獎(jiǎng)活動(dòng).第二輪抽獎(jiǎng)由第一輪獲獎(jiǎng)?wù)擢?dú)立操作按鈕,電腦隨機(jī)產(chǎn)生兩個(gè)實(shí)數(shù)x,y(x,y∈[0,4]),若滿足y≥
8
5
x,電腦顯示“中獎(jiǎng)”,則抽獎(jiǎng)?wù)咴俅潍@得特等獎(jiǎng)獎(jiǎng)金;否則電腦顯示“謝謝”,則不中特等獎(jiǎng)獎(jiǎng)金.
(Ⅰ)已知小明在第一輪抽獎(jiǎng)中被抽中,求小明在第二輪抽獎(jiǎng)中獲獎(jiǎng)的概率;
(Ⅱ)設(shè)特等獎(jiǎng)獎(jiǎng)金為a元,求小李參加此次活動(dòng)收益的期望,若該公司在此次活動(dòng)中收益的期望值是至少獲利70000元,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l的方向向量
a
=(-2,3,1)平面α的一個(gè)法向量
n
=(4,0,1)則直線l與平面α所成的角的正弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,過對(duì)角線BD1的平面分別交AA1,CC1于點(diǎn)E,F(xiàn).
(1)證明:截面BED1F把正方體分成體積相等的兩部分;
(2)若截面BED1F與底面ABCD所成二面角的余弦值為
6
3
,求直線BD與平面BED1F所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案