如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BDAE,BD=2AE,AE⊥AB,M為AB的中點.
(1)證明:CM⊥DE;
(2)在邊AC上找一點N,使CD平面BEN.
精英家教網(wǎng)
(1)證明:因為BC=AC,M為AB中點.所以CM⊥AB,
又因為平面ABC⊥平面ABDE,平面ABC∩平面ABDE=AB,CM?平面ABC,
所以CM⊥平面ABDE,
又因DE?平面ABDE,所以CM⊥DE;(7分)
(2)當
AN
AC
=
1
3
時,CD平面BEN.
連接AD交BE于點K,連接KN,
因梯形ABDE中BDAE,BD=2AE,
所以
AK
KD
=
AE
BD
=
1
2
,則
AK
AD
=
1
3

又因
AN
AC
=
1
3
,所以KNCD(14分)
又KN?平面BEN,CD?平面BEN,所以CD平面BEN.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M為AB的中點.
(1)證明:CM⊥DE;
(2)在邊AC上找一點N,使CD∥平面BEN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點.
(1)證明:CO⊥DE;
(2)求二面角C-DE-A的正切值大。
(3)求B到平面CDE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點.
(1)證明:CO⊥DE;
(2)求二面角C-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點.

(Ⅰ)證明:CO⊥DE;

(Ⅱ)求二面角C—DE—A的大小.

查看答案和解析>>

同步練習冊答案