已知橢圓的離心率為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為
(1)求橢圓C的方程
(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值。

(1) 
(2)

試題分析:解:(1)解得
橢圓C的方程為
(2)當(dāng)軸時(shí),,
當(dāng)AB與x軸不垂直時(shí),設(shè)直線l的方程為,




,
當(dāng)且僅當(dāng),
當(dāng)
最大時(shí),
點(diǎn)評:對于直線與橢圓的位置關(guān)系的研究,一般都是聯(lián)立方程組,結(jié)合韋達(dá)定理來得到弦長和點(diǎn)到直線距離點(diǎn)到高度,進(jìn)而求解面積,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線的右焦點(diǎn)作圓的切線(切點(diǎn)為),交軸于點(diǎn).若為線段的中點(diǎn),則雙曲線的離心率為
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知經(jīng)過拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),滿足,則弦的中點(diǎn)到準(zhǔn)線的距離為____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y2=2x的焦點(diǎn)是F,點(diǎn)P是拋物線上的動點(diǎn),又有點(diǎn)A(3,2).
則|PA|+|PF|的最小值是       ,取最小值時(shí)P點(diǎn)的坐標(biāo)           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓右頂點(diǎn)到直線的距離為,離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A為橢圓與y軸負(fù)半軸的交點(diǎn),設(shè)直線,是否存在實(shí)數(shù)m,使直線與(Ⅰ)中的橢圓有兩個(gè)不同的交點(diǎn)M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線上一點(diǎn)到焦點(diǎn)的距離為3,則點(diǎn)的橫坐標(biāo)是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以軸為始邊作兩個(gè)銳角,它們的終邊分別交單位圓于兩點(diǎn).已知兩點(diǎn)的橫坐標(biāo)分別是,

(1)求的值;(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線交于A,B兩點(diǎn),且(其中O為坐標(biāo)原點(diǎn)),若OMABM,則點(diǎn)M的軌跡方程為 (   )
A.2  B. 
C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
已知點(diǎn),參數(shù),點(diǎn)Q在曲線C:上.
(1)求在直角坐標(biāo)系中點(diǎn)的軌跡方程和曲線C的方程;
(2)求|PQ|的最小值.

查看答案和解析>>

同步練習(xí)冊答案