如圖所示, 在三棱柱中, 底面.

(1)若點分別為棱的中點,求證:平面;

(2) 請根據(jù)下列要求設計切割和拼接方法:要求用平行于三棱柱的某一條側棱的平面去截此三棱柱,切開后的兩個幾何體再拼接成一個長方體. 簡單地寫出一種切割和拼接方法,并寫出拼接后的長方體的表面積(不必寫出計算過程).

(Ⅰ)    (Ⅱ)拼接成的長方體的表面積為16或.


解析:

連結,底面,平面,

.    ,分別為棱的中點,

.,

∴Rt△ Rt△.∴.

,∴.

.  

,∴平面.

.   ,∴平面.                                      

平面,∴. 同理可證.                                     

,∴平面.                                        

(2)切割拼接方法一:如圖甲所示,分別以的中點所確定的平面為截面,把三棱柱切開后的兩個幾何體再拼接成一個長方體(該長方體的一個底面為長方形如圖①所示,),此時所拼接成的長方體的表面積為16. 

                                                            

                              圖甲                            圖①

切割拼接方法二:如圖乙所示,設的中點分別為,以四點所確定的平面為截面,把三棱柱切開后的兩個幾何體再拼接成一個長方體(該長方體的一個底面為正方形),此時所拼接成的長方體的表面積為.           

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,點E、F分別是棱AB、BB1的中點,則直線EF和BC1所成的角是( 。
A、45°B、60°C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ACB=90°,AB=2,BC=1,AA1=
3

(1)畫出該三棱柱的三視圖,并標明尺寸;
(2)求三棱錐A1-AB1C1的體積;
(3)若D是棱CC1的中點,則當點E在棱AB何處時,DE∥平面AB1C1?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AA1=BC=4,AC=3,AB=5.
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求B1C與平面ABB1A1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ACB=90°,AB=2,BC=1,AA1=
6
,D是棱CC1的中點.
(Ⅰ)證明:A1D⊥平面AB1C1;
(Ⅱ)求平面A1B1A與平面AB1C1所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在三棱柱ABC-A1B1C1中,E,F(xiàn)分別為AB,AC的中點,平面B1C1FE將三棱柱分成兩部分,求這兩部分的體積之比.

查看答案和解析>>

同步練習冊答案