6.已知函數(shù)f(x)=x5+ax3+bx-6,且f(-2)=10,則f(2)=-22.

分析 根據(jù)奇函數(shù)的性質(zhì)建立方程組關(guān)系進(jìn)行求解決即可.

解答 解:∵f(x)=x5+ax3+bx-6,且f(-2)=10,
∴f(-2)=-25-a•23-2b-6=10,
則f(2)=25+a•23-2b-6,
兩式相加得10+f(2)=-6-6=-12,
則f(2)=-10-12=-22,
故答案為:-22.

點(diǎn)評 本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)奇偶性的性質(zhì)建立方程組關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在等差數(shù)列{an}中,若a2+a8=8,則數(shù)列{an}的前9項(xiàng)和S9=36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線2x+3y-6=0分別交x,y軸于A,B兩點(diǎn),點(diǎn)P在直線y=-x-1上,則|PA|+|PB|的最小值是$\sqrt{37}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$的離心率$\frac{3}{2}$,則該雙曲線的虛半軸長b=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)設(shè)p:實(shí)數(shù)x滿足(x-3a)(x-a)<0,其中a>0,q:實(shí)數(shù)x滿足$\left\{\begin{array}{l}{x^2}-3x≤0\\{x^2}-x-2>0\end{array}\right.$,若p是?q的充分不必要條件,求實(shí)數(shù)a的取值范圍;
(2)設(shè)命題p:“函數(shù)$f(x)=\frac{x^3}{3}+\frac{{m{x^2}}}{2}+x+3$無極值”;命題q:“方程$\frac{x^2}{m}+{y^2}=1$表示焦點(diǎn)在y軸上的橢圓”,若p或q為真命題,p且q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若α是第二象限角,那么$\frac{α}{2}$和2α都不是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在數(shù)軸上,設(shè)點(diǎn)x在|x|≤3中按均勻分布出現(xiàn),記點(diǎn)a∈[-1,2]為事件A,則P(A)等于( 。
A.1B.$\frac{1}{2}$C.0D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了解某班學(xué)生喜愛數(shù)學(xué)是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:
喜愛數(shù)學(xué)不喜愛數(shù)學(xué)合 計(jì)
男  生20525      
女  生101525
合  計(jì)302050
已知在全部50人中隨機(jī)抽取1人抽到喜愛數(shù)學(xué)的學(xué)生的概率為$\frac{3}{5}$.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為喜愛數(shù)學(xué)與性別有關(guān)?說明你的理由.
提示:K2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.等差數(shù)列{an}中,Sn為其前n項(xiàng)和,已知a3+a6=16,S9-S4=65.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={2^{a_n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案