已知A,B,C,D四個(gè)城市,它們各自有一個(gè)著名的旅游點(diǎn),依次記為A,b,C,D,把A,B,C,D和A,b,C,D分別寫成左、右兩列.現(xiàn)在一名旅游愛好者隨機(jī)用4條線把城市與旅游點(diǎn)全部連接起來, 構(gòu)成“一一對(duì)應(yīng)”.規(guī)定某城市與自身的旅游點(diǎn)相連稱為“連對(duì)”,否則稱為“連錯(cuò)”,連對(duì)一條得2分,連錯(cuò)一條得0分.
(Ⅰ)求該旅游愛好者得2分的概率.
(Ⅱ)求所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望.

(Ⅰ);(Ⅱ) 2.

解析試題分析:(Ⅰ)設(shè)答對(duì)題的個(gè)數(shù)為y,得分為ξ,若4條線中連對(duì)1條,則ξ的取值為2;(Ⅱ)若4條線都連錯(cuò),則ξ的取值為0;若4條線中連對(duì)1條,則ξ的取值為2;若4條線中連對(duì)2條,則ξ的取值為4;若4條線中連對(duì)4條,則ξ的取值為8,然后分別求出ξ=0,2,4,8的概率,列出分布列,再利用期望公式代入計(jì)算即可.
試題解析:(Ⅰ)設(shè)答對(duì)題的個(gè)數(shù)為y,得分為ξ,若4條線中連對(duì)1條,則ξ的取值為2;
=
(Ⅱ)若4條線都連錯(cuò),則ξ的取值為0;若4條線中連對(duì)1條,則ξ的取值為2;若4條線中連對(duì)2條,則ξ的取值為4;若4條線中連對(duì)4條,則ξ的取值為8,則分別求出ξ=0,2,4,8的概率,列出分布列如下:


0
2
4
8
p




數(shù)學(xué)期望E="2" .
考點(diǎn):1、離散型隨機(jī)變量及其分布列;2、離散型隨機(jī)變量的期望與方差.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量
(1)若分別表示將一枚質(zhì)地均勻的骰子先后拋擲兩次時(shí)第一次、第二次正面朝上出現(xiàn)的點(diǎn)數(shù),求滿足的概率.
(2)若在連續(xù)區(qū)間[1,6]上取值,求滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小波以游戲方式?jīng)Q定參加學(xué)校合唱團(tuán)還是參加學(xué)校排球隊(duì).游戲規(guī)則為:以O(shè)為起點(diǎn),再?gòu)?img src="http://thumb.zyjl.cn/pic5/tikupic/89/4/8kvm12.png" style="vertical-align:middle;" />(如圖)這8個(gè)點(diǎn)中任取兩點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為.若就參加學(xué)校合唱團(tuán),否則就參加學(xué)校排球隊(duì).

(I)求小波參加學(xué)校合唱團(tuán)的概率;
(II)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某品牌汽車的4店,對(duì)最近100位采用分期付款的購(gòu)車者進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表所示:已知分3期付款的頻率為0.2,且4店經(jīng)銷一輛該品牌的汽車,顧客若一次付款,其利潤(rùn)為1萬元;若分2期付款或3期付款,其利潤(rùn)為1.5萬元;若分4期付款或5期付款,其利潤(rùn)為2萬元.用表示經(jīng)銷一輛該品牌汽車的利潤(rùn).

付款方式
一次
分2期
分3期
分4期
分5期
頻數(shù)
40
20
a
10
b
(1)若以頻率作為概率,求事件:“購(gòu)買該品牌汽車的3位顧客中,至多有1位采用分3期付款”的概率
(2)求的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)袋中裝有10個(gè)大小相同的小球.其中白球5個(gè)、黑球4個(gè)、紅球1個(gè).
(1)從袋中任意摸出2個(gè)球,求至少得到1個(gè)白球的概率;
(2)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了比較“傳統(tǒng)式教學(xué)法”與我校所創(chuàng)立的“三步式教學(xué)法”的教學(xué)效果.共選100名學(xué)生隨機(jī)分成兩個(gè)班,每班50名學(xué)生,其中一班采取“傳統(tǒng)式教學(xué)法”,二班實(shí)行“三步式教學(xué)法”
(Ⅰ)若全校共有學(xué)生2000名,其中男生1100名,現(xiàn)抽取100名學(xué)生對(duì)兩種教學(xué)方式的受歡迎程度進(jìn)行問卷調(diào)查,應(yīng)抽取多少名女生?
(Ⅱ)下表1,2分別為實(shí)行“傳統(tǒng)式教學(xué)”與“三步式教學(xué)”后的數(shù)學(xué)成績(jī):
表1

數(shù)學(xué)成績(jī)
90分以下
90—120分
120—140分
140分以上
頻   數(shù)
15
20
10
5
表2
數(shù)學(xué)成績(jī)
90分以下
90—120分
120—140分
140分以上
頻   數(shù)
5
40
3
2
完成下面2×2列聯(lián)表,并回答是否有99%的把握認(rèn)為這兩種教學(xué)法有差異.
班  次
120分以下(人數(shù))
120分以上(人數(shù))
合計(jì)(人數(shù))
一班
 
 
 
二班
 
 
 
合計(jì)
 
 
 
參考公式:,其中
參考數(shù)據(jù):
P(K2≥k0)
0.40
0.25
0.10
0.05
0.010
0.005
k0
0.708
1.323
2.706
3.841
6.635
7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

乒乓球單打比賽在甲、乙兩名運(yùn)動(dòng)員間進(jìn)行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結(jié)束),假設(shè)兩人在每一局比賽中獲勝的可能性相同.
(1)求甲以4比1獲勝的概率;
(2)求乙獲勝且比賽局?jǐn)?shù)多于5局的概率;
(3)求比賽局?jǐn)?shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某大學(xué)一個(gè)專業(yè)團(tuán)隊(duì)為某專業(yè)大學(xué)生研究了多款學(xué)習(xí)軟件,其中有A、B、C三種軟件投入使用,經(jīng)一學(xué)年使用后,團(tuán)隊(duì)調(diào)查了這個(gè)專業(yè)大一四個(gè)班的使用情況,從各班抽取的樣本人數(shù)如下表

班級(jí)




人數(shù)
3
2
3
4
(1)從這12人中隨機(jī)抽取2人,求這2人恰好來自同一班級(jí)的概率.
(2)從這12名學(xué)生中,指定甲、乙、丙三人為代表,已知他們下午自習(xí)時(shí)間每人選擇A、B兩個(gè)軟件學(xué)習(xí)的概率每個(gè)都是,且他們選擇A、B、C任一款軟件都是相互獨(dú)立的.設(shè)這三名學(xué)生中下午自習(xí)時(shí)間選軟件C的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人進(jìn)行圍棋比賽,規(guī)定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一方比對(duì)方多2分或打滿6局時(shí)停止.設(shè)甲在每局中獲勝的概率為,且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為.
(Ⅰ)求的值;
(Ⅱ)設(shè)表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案