19.若集合M={x|x2+5x-14<0},N={x|m<x<m+3},且M∩N=∅,則m的取值范圍為( 。
A.(-10,2)B.(-∞,-10)∪(2,+∞)C.[-10,2]D.(-∞,-10]∪[2,+∞)

分析 求出關(guān)于M的不等式,根據(jù)集合的不包含關(guān)系,求出m的范圍即可.

解答 解:M={x|x2+5x-14<0}={x|-7<x<2},
N={x|m<x<m+3},且M∩N=∅,
則m≥2或m+3≤-7,
故m∈(-∞,-10]∪[2,+∞),
故選:D.

點評 本題考查了集合的運算,考查空集的定義,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.下表給出的是兩個具有線性相關(guān)關(guān)系的變量x,y的一組樣本數(shù)據(jù):
x34567
y4.0a-5.4-0.50.5b-0.6
得到的回歸方程為y=bx+a.若已知上述樣本數(shù)據(jù)的中心為(5,0.9),則當x每增加1個單位時,y就( 。
A.增加1.4個單位B.減少1.4個單位C.增加7.9個單位D.減少7.9個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(1,2),向量$\overrightarrow{c}$在$\overrightarrow{a}$方向上的投影為2.若$\overrightarrow{c}$∥$\overrightarrow$,則|$\overrightarrow{c}$|的大小為( 。
A..2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩個焦點與短軸的一個端點是直角三角形的3個頂點,直線l:y=-x+3與橢圓E有且只有一個公共點T.
(Ⅰ)求橢圓E的方程及點T的坐標;
(Ⅱ)設(shè)O是坐標原點,直線l'平行于OT,與橢圓E交于不同的兩點A、B,且與直線l交于點P.證明:存在常數(shù)λ,使得PT2=λ|PA|•|PB|,并求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(0<ω<1)的圖象關(guān)于點(-2,0)對稱,則ω=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.P為雙曲線x2$-\frac{{y}^{2}}{3}$=1右支上一點,F(xiàn)1,F(xiàn)2為左、右焦點,若|PF1|+|PF2|=10,則$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知定義在R上的函數(shù)f(x)滿足f(x)=(x+2),且當-l≤x≤1時,f(x)=2|x|,函數(shù)g(x)=x+$\sqrt{2}$,實數(shù)a,b滿足b>a>3.若?x1∈[a,b],?x2∈[-$\sqrt{2}$,0],使得f(x1)=g(x2)成立,則b-a的最大值為( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.命題“?x∈N,x2>x”的否定為( 。
A.?x∈N,x2≤xB.?x0∈N,${x}_{0}^{2}$≤x0C.?x∉N,x2>xD.?x0∉N,${x}_{0}^{2}$≤x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)f(x)=e2x+2cosx-4在[0,2π]上是( 。
A.在[0,π]上是減函數(shù),[0,2π]上是增函數(shù)B.[0,π]在上是增函數(shù),[0,2π]上是減函數(shù)
C.增函數(shù)D.減函數(shù)

查看答案和解析>>

同步練習冊答案