【題目】已知函數(shù).

1)若函數(shù)的極小值為1,求實數(shù)m的值;

2)若函數(shù)時,其圖象全部都在第一象限,求實數(shù)m的取值范圍.

【答案】1.2

【解析】

1)求導(dǎo)得到,討論兩種情況,根據(jù)單調(diào)區(qū)間計算極值得到答案.

2)題目等價于時,恒成立,構(gòu)造函數(shù),求導(dǎo),計算導(dǎo)函數(shù)的導(dǎo)數(shù),討論兩種情況,根據(jù)函數(shù)的單調(diào)性計算最值得到答案.

1,

①若,則R上恒成立,

單調(diào)遞增,所以無極值;

②若,當(dāng)時,,當(dāng)時,,

單調(diào)遞減,在單調(diào)遞增,

所以的極小值為,由,解得.

綜上所述:.

2,函數(shù)圖像全部在第一象限,等價于時,恒成立,

,,

,,令,

顯然單調(diào)遞增,∴.

當(dāng)時,,所以,∴單調(diào)遞增,

,即,∴單調(diào)遞增,

所以,此時符合題意;

當(dāng)時,,∴,使

恒為負值,單調(diào)遞減,此時,

所以單調(diào)遞減,所以,此時不符合題意.

故所求m的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)證明:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數(shù)方程為為參數(shù),.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的圾坐標方,且直線l與曲線C相交于A,B兩點.

1)求曲線C的普通方程和l的直角坐標方程;

2)若,點滿足,求此時r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了提高生產(chǎn)效率,對生產(chǎn)設(shè)備進行了技術(shù)改造,為了對比技術(shù)改造后的效果,采集了技術(shù)改造前后各20次連續(xù)正常運行的時間長度(單位:天)數(shù)據(jù),整理如下:

改造前:1931,2226,34,15,22,25,40,35,18,16,282334,15,26,20,24,21

改造后:3229,41,18,26,33,42,34,37,39,3322,42,35,43,27,41,37,38,36

1)完成下面的列聯(lián)表,并判斷能否有99%的把握認為技術(shù)改造前后的連續(xù)正常運行時間有差異?

超過30

不超過30

改造前

改造后

2)工廠的生產(chǎn)設(shè)備的運行需要進行維護,工廠對生產(chǎn)設(shè)備的生產(chǎn)維護費用包括正常維護費,保障維護費兩種.對生產(chǎn)設(shè)備設(shè)定維護周期為T(即從開工運行到第kT天,k∈N*)進行維護.生產(chǎn)設(shè)備在一個生產(chǎn)周期內(nèi)設(shè)置幾個維護周期,每個維護周期相互獨立.在一個維護周期內(nèi),若生產(chǎn)設(shè)備能連續(xù)運行,則只產(chǎn)生一次正常維護費,而不會產(chǎn)生保障維護費;若生產(chǎn)設(shè)備不能連續(xù)運行,則除產(chǎn)生一次正常維護費外,還產(chǎn)生保障維護費.經(jīng)測算,正常維護費為0.5萬元/次;保障維護費第一次為0.2萬元/周期,此后每增加一次則保障維護費增加0.2萬元.現(xiàn)制定生產(chǎn)設(shè)備一個生產(chǎn)周期(120天計)內(nèi)的維護方案:T=30k=1,23,4.以生產(chǎn)設(shè)備在技術(shù)改造后一個維護周期內(nèi)能連續(xù)正常運行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護費的分布列及均值.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調(diào)査了部分市民(問卷調(diào)査表如下表所示),并根據(jù)調(diào)查結(jié)果繪制了尚不完整的統(tǒng)計圖表(如下圖)

由兩個統(tǒng)計圖表可以求得,選擇D選項的人數(shù)和扇形統(tǒng)計圖中E的圓心角度數(shù)分別為(

A.500,28.8°B.250,28.6°C.500,28.6°D.250,28.8°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)過點,離心率為.其左、右焦點分別為,O為坐標原點.直線l與以線段為直徑的圓相切,且直線l與橢圓C交于不同的A,B兩點.

1)求橢圓C的方程;

2)若滿足,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C方程為,橢圓中心在原點,焦點在x軸上.

1)證明圓C恒過一定點M,并求此定點M的坐標;

2)判斷直線與圓C的位置關(guān)系,并證明你的結(jié)論;

3)當(dāng)時,圓C與橢圓的左準線相切,且橢圓過(1)中的點M,求此時橢圓方程;在x軸上是否存在兩定點A,B使得對橢圓上任意一點Q(異于長軸端點),直線,的斜率之積為定值?若存在,求出A,B坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國際上通常用年齡中位數(shù)指標作為劃分國家或地區(qū)人口年齡構(gòu)成的標準:年齡中位數(shù)在20歲以下為年輕型人口;年齡中位數(shù)在2030歲為成年型人口;年齡中位數(shù)在30歲以上為老齡型人口.

如圖反映了我國全面放開二孩政策對我國人口年齡中位數(shù)的影響.據(jù)此,對我國人口年齡構(gòu)成的類型做出如下判斷:①建國以來直至2000年為成年型人口;②從2010年至2020年為老齡型人口;③放開二孩政策之后我國仍為老齡型人口.其中正確的是(

A.②③B.①③C.D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)質(zhì)量檢驗員為了檢測生產(chǎn)線上零件的情況,從生產(chǎn)線上隨機抽取了個零件進行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:

1)根據(jù)頻率分布直方圖,求這個零件尺寸的中位數(shù)(結(jié)果精確到);

2)已知尺寸在上的零件為一等品,否則為二等品. 將這個零件尺寸的樣本頻率視為概率,從生產(chǎn)線上隨機抽取個零件,試估計所抽取的零件是二等品的概率.

查看答案和解析>>

同步練習(xí)冊答案