8.若樣本點(diǎn)為(21,2.1)、(23,2.3)、(25,2.8)、(27,3.2)、(29,4.1),則樣本點(diǎn)的中心為(25,2.9).

分析 根據(jù)樣本點(diǎn)的數(shù)據(jù),分別求出對應(yīng)的平均數(shù)即可.

解答 解:樣本點(diǎn)為(21,2.1)、(23,2.3)、(25,2.8)、(27,3.2)、(29,4.1),
∴$\overline{x}$=$\frac{1}{5}$×(21+23+25+27+29)=25
$\overline{y}$=$\frac{1}{5}$×(2.1+2.3+2.8+3.2+4.1)=2.9;
所以樣本點(diǎn)的中心為(25,2.9).
故答案為:(25,2.9).

點(diǎn)評 本題考查了平均數(shù)的計(jì)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.有下列命題中,正確的是(  )
A.“若$\overrightarrow a=\overrightarrow b$,則$|\overrightarrow a|=|\overrightarrow b|$”的逆命題B.命題“?x∈R,$x+\frac{1}{x}<2$”的否定
C.“面積相等的三角形全等”的否命題D.“若A∩B=B,則A⊆B”的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用數(shù)學(xué)歸納法證明$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$≥$\frac{n}{2}$(n∈N*),從“n=k(k∈N*)”到“n=k+1”時(shí),左邊需增加的代數(shù)式為(  )
A.$\frac{1}{{2}^{k}+1}$B.$\frac{1}{{2}^{k+1}}$
C.$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}}$D.$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某射手每次射擊擊中目標(biāo)的概率是0.8,這名射手在5次射擊中,恰有4次擊中目標(biāo)的概率P=0.4096.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個(gè)棱長為2的正方體,它的頂點(diǎn)都在球面上,這個(gè)球的體積是( 。
A.B.2$\sqrt{3}$πC.4$\sqrt{3}$πD.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四個(gè)命題一定正確的是(  )
A.算法的三種基本結(jié)構(gòu)是順序結(jié)構(gòu)、條件結(jié)構(gòu),循環(huán)結(jié)構(gòu)
B.用樣本頻率分布估計(jì)總體頻率分布的過程中,總體容量越大,估計(jì)越精確
C.一組數(shù)據(jù)的方差為3,將這組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都擴(kuò)大到原來的3倍,所得的新數(shù)據(jù)組的方差還是3
D.有50件產(chǎn)品編號從1到50,現(xiàn)在從中抽取5件檢驗(yàn),用系統(tǒng)抽樣確定所抽取的編號為5,15,20,35,40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在銳角△ABC中,$\frac{{a}^{2}+^{2}-{c}^{2}}{\sqrt{3}ab}$=$\frac{cosC}{sin(B+C)}$.
(1)求角A;
(2)若a=2,且sinB+cos(C+2B-$\frac{5π}{6}$)取得最大值時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若f(x)=$\frac{1}{2}$(x-2)2+mlnx在(1,2)上單調(diào)遞減,則m的取值范圍是(  )
A.(-∞,0]B.(-∞,1)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知拋物線C1:y2=4x的焦點(diǎn)為F,橢圓C2的中心在原點(diǎn),F(xiàn)為其右焦點(diǎn),點(diǎn)M為曲線C1和C2在第一象限的交點(diǎn),且|$\overrightarrow{MF}$|=$\frac{5}{2}$.
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)設(shè)A,B為拋物線C1上的兩個(gè)動點(diǎn),且使得線段AB的中點(diǎn)D在直線y=x上,P(3,2)為定點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案