【題目】已知數(shù)列滿(mǎn)足,a1=1,a2=,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*,記T2n為數(shù)列{an}的前2n項(xiàng)和,數(shù)列{bn}是首項(xiàng)和公比都是2的等比數(shù)列,則使不等式·<1成立的最小整數(shù)n為( )
A.7B.6C.5D.4
【答案】C
【解析】
根據(jù)遞推關(guān)系分奇偶求出數(shù)列的關(guān)系,求出,題目中的不等式等價(jià)于求使成立的最小整數(shù)n.
由題,當(dāng)n為偶數(shù)時(shí),,所以是以a2=為首項(xiàng),為公比的等比數(shù)列,
當(dāng)n為奇數(shù)時(shí),,所以是以a1=1為首項(xiàng),2為公差的等差數(shù)列,
所以
,
數(shù)列{bn}是首項(xiàng)和公比都是2的等比數(shù)列,,
·<1即,
依次檢驗(yàn):當(dāng)n=1時(shí),不滿(mǎn)足,當(dāng)n=2時(shí),不滿(mǎn)足,
當(dāng)n=3時(shí),不滿(mǎn)足,當(dāng)n=4時(shí),不滿(mǎn)足,當(dāng)n=5時(shí),滿(mǎn)足,
所以滿(mǎn)足條件的最小正整數(shù)為5.
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位,得到函數(shù)的圖像.
(1)當(dāng)時(shí),求的值域
(2)令,若對(duì)任意都有恒成立,求的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn).
(1)求橢圓的方程,并求其離心率;
(2)過(guò)點(diǎn)作軸的垂線(xiàn),設(shè)點(diǎn)為第四象限內(nèi)一點(diǎn)且在橢圓上(點(diǎn)不在直線(xiàn)上),點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn)為,直線(xiàn)與交于另一點(diǎn).設(shè)為原點(diǎn),判斷直線(xiàn)與直線(xiàn)的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由我國(guó)引領(lǐng)的5G時(shí)代已經(jīng)到來(lái),5G的發(fā)展將直接帶動(dòng)包括運(yùn)營(yíng)、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進(jìn)而對(duì)增長(zhǎng)產(chǎn)生直接貢獻(xiàn),并通過(guò)產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動(dòng)國(guó)民經(jīng)濟(jì)各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟(jì)增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對(duì)今后幾年的5G經(jīng)濟(jì)產(chǎn)出所做的預(yù)測(cè).結(jié)合下圖,下列說(shuō)法正確的是( )
A.5G的發(fā)展帶動(dòng)今后幾年的總經(jīng)濟(jì)產(chǎn)出逐年增加
B.設(shè)備制造商的經(jīng)濟(jì)產(chǎn)出前期增長(zhǎng)較快,后期放緩
C.設(shè)備制造商在各年的總經(jīng)濟(jì)產(chǎn)出中一直處于領(lǐng)先地位
D.信息服務(wù)商與運(yùn)營(yíng)商的經(jīng)濟(jì)產(chǎn)出的差距有逐步拉大的趨勢(shì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型工廠(chǎng)有6臺(tái)大型機(jī)器,在1個(gè)月中,1臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修,每臺(tái)機(jī)器出現(xiàn)故障的概率為.已知1名工人每月只有維修2臺(tái)機(jī)器的能力(若有2臺(tái)機(jī)器同時(shí)出現(xiàn)故障,工廠(chǎng)只有1名維修工人,則該工人只能逐臺(tái)維修,對(duì)工廠(chǎng)的正常運(yùn)行沒(méi)有任何影響),每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障時(shí)能及時(shí)得到維修,就能使該廠(chǎng)獲得10萬(wàn)元的利潤(rùn),否則將虧損2萬(wàn)元.該工廠(chǎng)每月需支付給每名維修工人1萬(wàn)元的工資.
(1)若每臺(tái)機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時(shí),有工人進(jìn)行維修(例如:3臺(tái)大型機(jī)器出現(xiàn)故障,則至少需要2名維修工人),則稱(chēng)工廠(chǎng)能正常運(yùn)行.若該廠(chǎng)只有1名維修工人,求工廠(chǎng)每月能正常運(yùn)行的概率;
(2)已知該廠(chǎng)現(xiàn)有2名維修工人.
(。┯浽搹S(chǎng)每月獲利為萬(wàn)元,求的分布列與數(shù)學(xué)期望;
(ⅱ)以工廠(chǎng)每月獲利的數(shù)學(xué)期望為決策依據(jù),試問(wèn)該廠(chǎng)是否應(yīng)再招聘1名維修工人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)有個(gè)名句“運(yùn)籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來(lái)進(jìn)行計(jì)算,算籌是將幾寸長(zhǎng)的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,如下表:
表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬(wàn)位數(shù)用縱式表示,十位,千位,十萬(wàn)位用橫式表示,以此類(lèi)推,例如6613用算籌表示就是:,則7288用算籌式可表示為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖(1)梯形中,,過(guò)作于,,沿翻折后得圖(2),使得,又點(diǎn)滿(mǎn)足,連接,且.
(1)證明:平面;
(2)求三棱錐外接球的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)的直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),以,兩點(diǎn)為切點(diǎn)分別作拋物線(xiàn)的切線(xiàn),,設(shè)與交于點(diǎn).
(1)求;
(2)過(guò),的直線(xiàn)交拋物線(xiàn)于,兩點(diǎn),證明:,并求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),右焦點(diǎn)到直線(xiàn)的距離為3.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)A作兩條互相垂直的直線(xiàn),分別交橢圓于M,N兩點(diǎn),求證:直線(xiàn)MN恒過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com