已知,函數(shù)
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)有兩個(gè)極值點(diǎn)(設(shè)為和)時(shí),求證:.
解:(1)∵,
,考慮分子
當(dāng),即時(shí),在上,恒成立,此時(shí)在上單調(diào)遞增;
當(dāng),即時(shí),方程有兩個(gè)解不相等的實(shí)數(shù)根:,,顯然,
∵當(dāng)或時(shí),;當(dāng)時(shí),;
∴函數(shù)在上單調(diào)遞減,
在和上單調(diào)遞增.
(2)∵是的兩個(gè)極值點(diǎn),故滿足方程,
即是的兩個(gè)解,∴,
∵
而在中,
因此,要證明,
等價(jià)于證明
注意到,只需證明
即證
令,則,
當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;---
當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;
因此,從而,即,原不等式得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)數(shù)列是公比為正數(shù)的等比數(shù)列,,.
(1)求數(shù)列的通項(xiàng)公式;---
(2)若數(shù)列滿足:,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
把邊長(zhǎng)為的正方形沿對(duì)角線折起,使得平面平面,形成三棱錐的正視圖與俯視圖如下圖所示,則側(cè)視圖的面積為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)、,運(yùn)算“”、“”定義為:=,=,則下列各式其中不恒成立的是( )
⑴ ⑵
⑶ ⑷
A.⑴、⑶ B.⑵、⑷
C.⑴、⑵、⑶ D.⑴、⑵、⑶、⑷
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com