方程的解所在的區(qū)間(    )
A.B.C.D.
C

試題分析:令,由于,,,,根據(jù)零點存在定理可知方程的解所在的區(qū)間為,故選C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某投資公司計劃投資A,B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預測,A產(chǎn)品的利潤y1與投資金額x的函數(shù)關(guān)系為y1=18-,B產(chǎn)品的利潤y2與投資金額x的函數(shù)關(guān)系為y2(注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某商場經(jīng)營一批進價是30元/件的商品,在市場試銷中發(fā)現(xiàn),此商品銷售價元與日銷售量件之間有如下關(guān)系:
x
45
50
y
27
12
(I)確定的一個一次函數(shù)關(guān)系式;
(Ⅱ)若日銷售利潤為P元,根據(jù)(I)中關(guān)系寫出P關(guān)于的函數(shù)關(guān)系,并指出當銷售單價為多少元時,才能獲得最大的日銷售利潤?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某種海洋生物身體的長度(單位:米)與生長年限t(單位:年)
滿足如下的函數(shù)關(guān)系:.(設(shè)該生物出生時t=0)
(1)需經(jīng)過多少時間,該生物的身長超過8米;
(2)設(shè)出生后第年,該生物長得最快,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

對于函數(shù),若存在實數(shù)對(),使得等式對定義域中的每一個都成立,則稱函數(shù)是“()型函數(shù)”.
(1) 判斷函數(shù)是否為“()型函數(shù)”,并說明理由;
(2) 若函數(shù)是“()型函數(shù)”,求出滿足條件的一組實數(shù)對;
(3)已知函數(shù)是“()型函數(shù)”,對應(yīng)的實數(shù)對為(1,4).當 時,,若當時,都有,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

關(guān)于x的方程上有兩個不同的實數(shù)根,則實數(shù)a的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義域為R的函數(shù)滿足,且當時,,則當時,的最小值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出以下四個結(jié)論:
①函數(shù)的對稱中心是
②若不等式對任意的x∈R都成立,則
③已知點與點Q(l,0)在直線兩側(cè),則
④若將函數(shù)的圖像向右平移個單位后變?yōu)榕己瘮?shù),則的最小值是
其中正確的結(jié)論是____________(寫出所有正確結(jié)論的編號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在用二分法求方程的一個近似解時,現(xiàn)在已經(jīng)將一根鎖定在(1,2)內(nèi),則下一步可斷定該根所在的區(qū)間為(  )
A.(1.4,2)B.(1,1.4)C.(1,1.5)D.(1.5,2)

查看答案和解析>>

同步練習冊答案