19.設(shè)U=R,A={x|-3<x≤4},B={x|0≤x<8}.求A∩B,A∪B,∁UA,∁UB,∁U(A∩B),∁U(A∪B),(∁UA)∩(∁UB),(∁UA)∪(∁UB).

分析 根據(jù)交集、并集與補(bǔ)集的定義,進(jìn)行計(jì)算即可.

解答 解:U=R,A={x|-3<x≤4},B={x|0≤x<8};
∴A∩B={x|0≤x≤4},
A∪B={x|-3<x<8},
UA={x|x≤-3或x>4},
UB={x|x<0或x≥8},
U(A∩B)={x|x<0或x>4},
U(A∪B)={x|x≤-3或x≥8},
(∁UA)∩(∁UB)={x|x≤-3或x≥8},
(∁UA)∪(∁UB)={x|x<0或x>4}.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某衛(wèi)視推出一檔全新益智答題類節(jié)目,這檔節(jié)目打破以往答題類節(jié)目的固定模式,每檔節(jié)目中將會(huì)有各種年齡層次,不同身份,性格各異的10位守擂者和1位打擂者參加,以PK的方式獲得別人手中的獎(jiǎng)品,一旦失敗,就將掉下擂臺(tái),能否“一站到底”成為節(jié)目最大懸念.現(xiàn)有一位參賽者已經(jīng)挑落10人,此時(shí)他可以贏得10件獎(jiǎng)品離開或者沖擊超級(jí)大獎(jiǎng)“馬爾代夫雙人游”,沖擊超級(jí)大獎(jiǎng)會(huì)有一定的風(fēng)險(xiǎn),節(jié)目組會(huì)精選5道題進(jìn)行考核,每個(gè)問題能正確回答進(jìn)入下一道,否則失敗,此時(shí)只能帶走5件獎(jiǎng)品,若5道題全部答對(duì)則可以帶走10件獎(jiǎng)品且還可以獲得超級(jí)大獎(jiǎng)“馬爾代夫雙人游”.若這位參賽者答對(duì)第1,2,3,4,5道題的概率分別為$\frac{5}{6}$,$\frac{2}{3}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{6}$,且各輪問題能否正確回答互不影響,求:
(Ⅰ)該參賽者選擇沖擊大獎(jiǎng)最終只帶走5件獎(jiǎng)品的概率;
(Ⅱ)該參賽者在沖擊超級(jí)大獎(jiǎng)的過程中回答問題的個(gè)數(shù)記為X,求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x+2016)=$\frac{{{x^2}+1}}{2x}$(x>0),則函數(shù)f(x)的最小值是( 。
A.2B.2016C.-2015D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知x∈R,符號(hào)[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=$\frac{[x]}{x}$-a(x≠0)有且僅有2個(gè)零點(diǎn),則a的取值范圍是($\frac{2}{3}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C:(x-3)2+(y-4)2=4.
(1)若直線l1過定圓心C,且平行于直線x-2y+3=0,求直線l1的方程;
(2)若圓D半徑是3,圓心在直線l2:x+y-2=0上,且圓與C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖1,已知四邊形ABFD為直角梯形,AB∥DF,∠ADF=$\frac{π}{2}$,BC⊥DF,△AED為等邊三角形,AD=$\frac{{10\sqrt{3}}}{3}$,DC=$\frac{{2\sqrt{7}}}{3}$,如圖2,將△AED,△BCF分別沿AD,BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,連接EF,DF,設(shè)G為AE上任意一點(diǎn).

(1)證明:DG∥平面BCF;
(2)若GC=$\frac{16}{3}$,求$\frac{EG}{GA}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(m,4),$\overrightarrow$=(3,-2),且$\overrightarrow{a}$∥$\overrightarrow$,則m=( 。
A.6B.-6C.$\frac{8}{3}$D.-$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2-(2a+1)x.
(1)當(dāng)a=1時(shí),求曲線y=g(x)在x=1處的切線的方程;
(2)當(dāng)a>0時(shí),討論函數(shù)g(x)的單調(diào)性;
(3)設(shè)斜率為k的直線與函數(shù)f(x)的圖象交于A(x1,y1),B(x2,y2)兩點(diǎn),其中x1<x2
證明$\frac{1}{x_2}$<k<$\frac{1}{x_1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知三角形ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊a,b,c成等比數(shù)列,且a,2,c成等差數(shù)列,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,則角B=$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案