7.在△ABC中,若sinA:sinB:sinC=3:5:7,則△ABC的形狀是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.無法確定

分析 由正弦定理可得a:b:c=3:5:7,進(jìn)而可用b表示a,c,代入余弦定理化簡可得cosC的值,結(jié)合C的范圍即可得解C的值,從而得解.

解答 解:∵sinA:sinB:sinC=3:5:7,
∴由正弦定理可得:a:b:c=3:5:7,
∴a=$\frac{3b}{5}$,c=$\frac{7b}{5}$,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{\frac{9^{2}}{25}+^{2}-\frac{49^{2}}{25}}{2×\frac{3b}{5}×b}$=-$\frac{1}{2}$,
∵C∈(0,π),
∴C=$\frac{2π}{3}$.
故△ABC的形狀是鈍角三角形.
故選:C.

點(diǎn)評 本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.甲、乙兩人進(jìn)行定點(diǎn)投籃游戲,投籃者若投中則繼續(xù)投籃,否則由對方投籃,第一次由甲投籃已知每次投籃甲、乙命中的概率分別為$\frac{1}{2}$、$\frac{2}{3}$;
(1)求第3次由乙投籃的概率;
(2)求前4次投籃中各投籃兩次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)y=f(x+2)為偶函數(shù),且函數(shù)y=f(x)關(guān)于點(diǎn)(1,0)中心對稱,當(dāng)x∈(0,1)時(shí),f(x)=2x-1,則f(log224)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=n2(n∈N*).
(1)求數(shù)列{an}通項(xiàng)公式;
(2)求數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A={x|x2-x+1≥0},B={x|x2-5x+4≥0},則A∩B=(-∞,1]∪[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$\overrightarrow a$=(1,-2),$\overrightarrow b$=(3,4),若$\overrightarrow a$與$\overrightarrow a$+λ$\overrightarrow b$夾角為銳角,則實(shí)數(shù)λ的取值范圍是(  )
A.(-∞,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.到“北上廣”創(chuàng)業(yè)是很多大學(xué)生的夢想,從某大學(xué)隨機(jī)抽查了100人進(jìn)行了問卷調(diào)查,得到了如下2×2列聯(lián)表:
想到“北上廣”創(chuàng)業(yè)不想到“北上廣”創(chuàng)業(yè)合計(jì)
男性10
女性20
合計(jì)100
己知在這100人中隨機(jī)抽取1人,抽到想到“北上廣”創(chuàng)業(yè)的概率是$\frac{3}{5}$.
(1)請將上面的2×2列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為大學(xué)生想到“北上廣”創(chuàng)業(yè)與性別有關(guān)?并說明你的理由;
(3)經(jīng)進(jìn)一步調(diào)查發(fā)現(xiàn),在想到“北上廣”創(chuàng)業(yè)的20名女大學(xué)生中,有5人想到“廣州”創(chuàng)業(yè).若從想到“北上廣”創(chuàng)業(yè)的20名女大學(xué)生中任選3人,求在選出的3人中少有2人想到“廣州”創(chuàng)業(yè)的概率.
下面的臨界值表僅供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是某算法的程序框圖,若實(shí)數(shù)x∈(-1,4),則輸出的數(shù)值不小于30的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{7}{30}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.閱讀如圖所示的程序框圖,若輸入的x值為-$\frac{1}{2}$,則輸出的y值是(  )
A.$\sqrt{2}$B.$\frac{3}{4}$C.-2D.2

查看答案和解析>>

同步練習(xí)冊答案