(本題滿分12分)

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

喜愛打籃球

不喜愛打籃球

合計(jì)

男生

5

女生

10

合計(jì)

50

已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為

(1)請將上面的列聯(lián)表補(bǔ)充完整;

(2)是否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;

(3)已知喜愛打籃球的10位女生中,還喜歡打羽毛球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)再從喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進(jìn)行其他方面的調(diào)查,求不全被選中的概率.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 (參考公式:,其中)

喜愛打籃球

不喜愛打籃球

合計(jì)

男生

20

25

女生

10

15

25

合計(jì)

30

20

50

有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)


解析:

解:(1) 列聯(lián)表補(bǔ)充如下:-----------------------------------------------------3分

喜愛打籃球

不喜愛打籃球

合計(jì)

男生

20

25

女生

10

15

25

合計(jì)

30

20

50

(2)∵------------------------5分

∴有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān).------------------------------------------6分

(3)從10位女生中選出喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:

,,

,,,,

,

,

,

基本事件的總數(shù)為30,---------------------------------------------------------------------------9分

表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于, 5個(gè)基本事件組成,

所以,-------------------------------------------------------------11分

由對立事件的概率公式得.-----------------------------12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB;

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大��;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊答案
关 闭