(2012•蕪湖三模)已知直線l的參數(shù)方程為
x=-4+4t
y=-1-2t
(t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,圓C的方程為p=2
2
cos(θ+
π
4
),則圓心C到直線l的距離為
5
5
分析:把參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程,利用點(diǎn)到直線的距離公式求出圓心C到直線l的距離.
解答:解:由直線l的參數(shù)方程為
x=-4+4t
y=-1-2t
(t為參數(shù))可得,x+2y+6=0.
由圓C的方程為p=2
2
cos(θ+
π
4
),可得 ρ2=2
2
ρ(
2
2
cosθ
-
2
2
sinθ
),即 x2+y2=2x-2y,即 (x-1)2+(y+1)2=2,
表示以(1,-1)為圓心、以
2
為半徑的圓..
故圓心C到直線l的距離為
|1-2+6|
1+4
=
5
點(diǎn)評(píng):本題主要考查把參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蕪湖三模)若方程e2x+ex-a=0有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
(0,+∞)
(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蕪湖三模)如圖,將邊長(zhǎng)為1,2,3的正八邊形疊放在一起,同一邊上相鄰珠子的距離為1,若以此方式再放置邊長(zhǎng)為4,5,6,…,10的正八邊形,則這10個(gè)正八邊形鑲嵌的珠子總數(shù)是
341
341

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蕪湖三模)若存在區(qū)間M=[a,b](a<b)使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個(gè)“穩(wěn)定區(qū)間”.給出下列4個(gè)函數(shù):
①f(x)=ex     ②f(x)=x3 ③f(x)=cos
πx2
     ④f(x)=lnx+1
其中存在穩(wěn)定區(qū)間的函數(shù)有
②③
②③
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蕪湖三模)在等比數(shù)列{an}中,已知a6-a4=24,a3a5=64,則{an}前8項(xiàng)的和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蕪湖三模)設(shè)實(shí)數(shù)x,y滿足
x-y-2≤0
x+2y-5≥0
y-2≤0
u=
x+y
x
的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案