11.一個總體中有100個個體,隨機編號為0,1,2,3,…,99,依編號順序平均分成10個小組,組號依次為1,2,3,…10.現(xiàn)用系統(tǒng)抽樣方法抽取一個容量為10的樣本,若第1組隨機抽取的號碼為m=6,則在第7組中抽取的號碼是( 。
A.66B.76C.63D.73

分析 由總體容量及組數(shù)求出間隔號,然后用6加上60即可.

解答 解:總體為100個個體,依編號順序平均分成10個小組,則間隔號為10,
所以在第7組中抽取的號碼為6+10×6=66.

點評 本題考查了系統(tǒng)抽樣,系統(tǒng)抽樣是根據(jù)分組情況求出間隔號,然后采用簡單的隨機抽樣在第一組隨機抽取一個個體,其它的只要用第一組抽到的號碼依次加上間隔號即可.此題為基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.某畢業(yè)生參加人才招聘會,分別向甲、乙、丙三個公司投遞了個人簡歷,假定該畢業(yè)生得到甲家公司面試的概率為$\frac{1}{2}$,得到乙、丙公司面試的概率均為p,且三個公司是否讓其面試是相互獨立的,記X為該畢業(yè)生得到面試的公司個數(shù),若P(X=0)=$\frac{1}{18}$,則隨機變量X的數(shù)學期望E(X)=$\frac{11}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.將號碼分別為1、2、…、6的六個小球放入一個袋中,這些小球僅號碼不同,其余完全相同.甲從袋中摸出一個球,號碼為a,放回后,乙從此袋再摸出一個球,其號碼為b,則使不等式a-2b+2>0成立的事件發(fā)生的概率等于(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x2-4x,則不等式f(x)>x的解集為(-5,0)∪(5,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2若平面向量$\overrightarrow{c}$滿足|$\overrightarrow{c}$-($\overrightarrow{a}$+$\overrightarrow$)|=|$\overrightarrow{a}$-$\overrightarrow$|,則|$\overrightarrow{c}$|的最大值為2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,$sinB(acosB+bcosA)=\sqrt{3}ccosB$.
(1)求B;
(2)若$b=2\sqrt{3}$,△ABC的面積為$2\sqrt{3}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.數(shù)列{an}表示第n天午時某種細菌的數(shù)量.細菌在理想條件下第n天的日增長率rn=0.6(rn=$\frac{{{a_{n+1}}-{a_n}}}{a_n}$,n∈N*).當這種細菌在實際條件下生長時,其日增長率rn會發(fā)生變化.如圖描述了細菌在理想和實際兩種狀態(tài)下細菌數(shù)量Q隨時間的變化規(guī)律.那么,對這種細菌在實際條件下日增長率rn的規(guī)律描述正確的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知α∈(0,π),$cosα=-\frac{1}{2}$,則sin2α=(  )
A.$±\frac{{\sqrt{3}}}{2}$B.$±\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=3,BC=4,AB=5,點D是AB的中點.
(1)求證AC⊥BC1
(2)求證AC1∥平面CDB1

查看答案和解析>>

同步練習冊答案