(1)是否存在實(shí)數(shù)a,使函數(shù)f(x)= 的圖象上有且僅有兩個相異的穩(wěn)定點(diǎn)?若存在,求出范圍;若不存在,請說明理由.
(2)若函數(shù)f(x)是定義在R上的奇函數(shù),求證:函數(shù)必有奇數(shù)個穩(wěn)定點(diǎn).
(1)解:設(shè)函數(shù)f(x)= 的圖象上有且僅有兩個相異的穩(wěn)定點(diǎn),
則f(x)= =x,
即有兩個相異的根,
所以
解之,得a>5或a<1,a≠-.
因此存在a∈(-∞,-)∪(-,1)∪(5,+∞)使得函數(shù)f(x)=的圖象上有且僅有兩個相異的穩(wěn)定點(diǎn).
(2)證明:因?yàn)楹瘮?shù)f(x)是定義在R上的奇函數(shù),
所以f(-0)=-f(0),即f(0)=0.
因此(0,0)是f(x)的一個穩(wěn)定點(diǎn).
假設(shè)函數(shù)還有穩(wěn)定點(diǎn)(x0,x0),
即f(x0)=x0,則必定有f(-x0)=-x0.
這說明(-x0,-x0)也是函數(shù)的穩(wěn)定點(diǎn).
綜上所述,奇函數(shù)的穩(wěn)定點(diǎn)除原點(diǎn)外,都是成對出現(xiàn),因此其穩(wěn)定點(diǎn)的個數(shù)是奇數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010年江蘇省高一第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(滿分16分)
記函數(shù)f(x)的定義域?yàn)镈,若存在,使成立,則稱以為坐標(biāo)的點(diǎn)為函數(shù)圖象上的不動點(diǎn)。
(1)若函數(shù)的圖象上有兩個關(guān)于原點(diǎn)對稱的不動點(diǎn),求應(yīng)滿足的條件;
(2)下述結(jié)論“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個不動點(diǎn),則不動點(diǎn)有奇數(shù)個”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉出一反例說明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(滿分16分)記函數(shù)f(x)的定義域?yàn)镈,若存在,使成立,則稱以為坐標(biāo)的點(diǎn)為函數(shù)圖象上的不動點(diǎn)。
(1)若函數(shù)的圖象上有兩個關(guān)于原點(diǎn)對稱的不動點(diǎn),求應(yīng)滿足的條件;
(2)下述結(jié)論“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個不動點(diǎn),則不動點(diǎn)有奇數(shù)個”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉出一反例說明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(滿分16分)記函數(shù)f(x)的定義域?yàn)镈,若存在,使成立,則稱以為坐標(biāo)的點(diǎn)為函數(shù)圖象上的不動點(diǎn)。
(1)若函數(shù)的圖象上有兩個關(guān)于原點(diǎn)對稱的不動點(diǎn),求應(yīng)滿足的條件;
(2)下述結(jié)論“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個不動點(diǎn),則不動點(diǎn)有奇數(shù)個”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉出一反例說明。
(請將解答寫在規(guī)定的區(qū)域,寫在其它區(qū)域的不得分。)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(滿分16分)記函數(shù)f(x)的定義域?yàn)镈,若存在,使成立,則稱以為坐標(biāo)的點(diǎn)為函數(shù)圖象上的不動點(diǎn)。
(1)若函數(shù)的圖象上有兩個關(guān)于原點(diǎn)對稱的不動點(diǎn),求應(yīng)滿足的條件;
(2)下述結(jié)論“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個不動點(diǎn),則不動點(diǎn)有奇數(shù)個”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉出一反例說明。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com