18.寫出$\frac{{2}^{2}-1}{1}$,$\frac{{3}^{2}-2}{3}$,$\frac{{4}^{2}-3}{5}$,$\frac{{5}^{2}-4}{7}$,…的通項(xiàng)公式:$\frac{(n+1)^{2}-n}{2n-1}$..

分析 分母是奇數(shù)可以表示為:2n-1;分子是項(xiàng)數(shù)加1的平方減1,即:(n+1)2-n.

解答 解:根據(jù)前四項(xiàng)的特點(diǎn)可以寫出通項(xiàng)公式為:$\frac{(n+1)^{2}-n}{2n-1}$.
故答案為:$\frac{(n+1)^{2}-n}{2n-1}$.

點(diǎn)評(píng) 根據(jù)數(shù)列的前幾項(xiàng),寫出數(shù)列的一個(gè)通項(xiàng)公式,考查的是學(xué)生對(duì)數(shù)據(jù)的觀察歸納能力,需要注意其和常見數(shù)據(jù)的聯(lián)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)拋物線y2=2x的焦點(diǎn)為F,過點(diǎn)M($\sqrt{3}$,0)的直線與拋物線相交于A,B兩點(diǎn),與拋物線的準(zhǔn)線相交于C,|BF|=2,則△BCF和△ACF的面積之比為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體的外接球的表面積為32π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知:橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),過點(diǎn)A(-a,0),B(0,b)的直線的斜率為$\frac{1}{2}$,原點(diǎn)到該直線的距離為$\frac{{2\sqrt{5}}}{5}$.
(1)求橢圓的方程;
(2)斜率大于零的直線過D(-1,0)與橢圓交于E,F(xiàn)兩點(diǎn),若$\overrightarrow{ED}$=2$\overrightarrow{DF}$,求直線EF的方程;
(3)是否存在實(shí)數(shù)k,使直線y=kx+2交橢圓于P,Q兩點(diǎn),且以PQ為直徑的圓過點(diǎn)D(-1,0)?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示的四個(gè)函數(shù)圖象,在區(qū)間(-∞,0)內(nèi),方程fi(x)=0(i=1,2,3,4)有實(shí)數(shù)解的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的坐標(biāo)原點(diǎn)重合、極軸與x軸的正半軸重合,若直線l的極坐標(biāo)方程為ρsin(θ-$\frac{π}{6}$)=$\frac{\sqrt{3}-1}{2}$.
(1)寫出直線l的參數(shù)方程;
(2)設(shè)直線l與圓ρ=2相交于A,B兩點(diǎn),求點(diǎn)P(1,1)到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.把函數(shù)y=sinx的圖象上所有點(diǎn)的橫坐標(biāo)都縮小到原來的一半,縱坐標(biāo)保持不變,再把圖象向右平移$\frac{π}{6}$個(gè)單位,這是對(duì)應(yīng)于這個(gè)圖象的解析式為( 。
A.$y=sin(2x-\frac{π}{3})$B.$y=sin(2x-\frac{π}{6})$C.$y=sin(\frac{x}{2}-\frac{π}{3})$D.$y=sin(\frac{x}{2}-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.直線x-y-1=0與圓(x-1)2+(y-2)2=4相交于A、B兩點(diǎn),則弦AB的長(zhǎng)為$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某校周四下午第五、六兩節(jié)是選修課時(shí)間,現(xiàn)有甲、乙、丙三位教師可開課.已知甲、乙教師各自最多可以開設(shè)兩節(jié)課,丙教師最多可以開設(shè)一節(jié)課.現(xiàn)要求第五、六兩節(jié)課中每節(jié)課恰有兩位教師開課(不必考慮教師所開課的班級(jí)和內(nèi)容),則丙教師不開課的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{1}{7}$D.$\frac{1}{9}$

查看答案和解析>>

同步練習(xí)冊(cè)答案