A. | (-1,+∞) | B. | (-∞,-1) | C. | (-∞,e-3) | D. | (e-3,+∞) |
分析 由條件可得2f(x)min>f(x)max且f(x)min>0,再利用導(dǎo)數(shù)求得函數(shù)的最值,從而得出結(jié)論.
解答 解:任取三個(gè)實(shí)數(shù)a,b,c均存在以f(a),f(b),f(c)為邊長(zhǎng)的三角形,
等價(jià)于f(a)+f(b)>f(c)恒成立,可轉(zhuǎn)化為2f(x)min>f(x)max且f(x)min>0.
令$f'(x)=-\frac{1}{x}+1=\frac{x-1}{x}=0$得x=1.
當(dāng)$\frac{1}{e}<x<1$時(shí),f'(x)<0;
當(dāng)1<x<e時(shí),f'(x)>0;
則當(dāng)x=1時(shí),f(x)min=f(1)=1+k,$f{(x)_{max}}=max\{f(\frac{1}{e}),f(e)\}$=max{$\frac{1}{e}$+1+k,e-1+k}=e-1+k,
從而可得$\left\{\begin{array}{l}{2(1+k)>e-1+k}\\{k+1>0}\end{array}\right.$,解得k>e-3,
故選:D.
點(diǎn)評(píng) 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的恒成立問(wèn)題,求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和最值之間的關(guān)系轉(zhuǎn)化為求函數(shù)的最值是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,+∞) | B. | (1,+∞) | C. | (0,1] | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com