【題目】如圖,在直三棱柱中, , , 分別是的中點。
(Ⅰ)求證: ;
(Ⅱ)求直線和平面所成角的大。
【答案】(1)見解析;(2)30°.
【解析】試題分析:(I)由, ,則平面,連接,則,由側面是正方形,所以.又,根據(jù)線面垂直的判定定理可知平面,由側面是正方形, 是的中點,連接,則點是的中點,又點N是的中點,則是的中位線,所以∥,從而平面;(Ⅱ)根據(jù)平面,設與相交于點,連接,根據(jù)線面所成角的定義可知為直線和平面所成角,設,求出, ,在中,求出,即可求出所求的角.
試題解析:(I)證明:由已知
∴平面
連接,則
由已知,側面是正方形,所以
又∵
∴平面
∵側面是正方形, 是的中點
∴連接,則點是的中點
又∵點N是的中點
∴是的中位線
∴∥
∴平面
(Ⅱ)設與相交于點,連接
∵平面
∴為直線和平面所成角
設,則在
∴, 故直線和平面所成的角為30°
科目:高中數(shù)學 來源: 題型:
【題目】某校高一某班的一次數(shù)學測試成績(滿分為100分)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,據(jù)此解答如下問題;
(1)求分數(shù)在[50,60)的頻率及全班的人數(shù);
(2)求分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(3)根據(jù)頻率分布直方圖,估計該班數(shù)學成績的平均數(shù)與中位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中, 底面,底面是直角梯形, , , , ,點在上,且.
(Ⅰ)已知點在上,且,求證:平面平面;
(Ⅱ)當二面角的余弦值為多少時,直線與平面所成的角為?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , , 垂直于底面, , , 分別為, 的中點.
(Ⅰ)求證: ;
(Ⅱ)求四棱錐的體積和截面的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)一塊長為、寬為的長方形鐵片,鐵片的四角截去四個邊長均為的小正方形,然后做成一個無蓋方盒.
(Ⅰ)試把方盒的容積V表示為的函數(shù);
(Ⅱ)試求方盒容積V的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)在平面直角坐標系xOy中,已知兩點和,動點M滿足,設點M的軌跡為C,半拋物線:(),設點.
(Ⅰ)求C的軌跡方程;
(Ⅱ)設點T是曲線上一點,曲線在點T處的切線與曲線C相交于點A和點B,求△ABD的面積的最大值及點T的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓Cx2+y2+2x﹣4y+3=0
(1)已知不過原點的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)求經(jīng)過原點且被圓C截得的線段長為2的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,直線的方程為,點是拋物線上到直線距離最小的點,點是拋物線上異于點的點,直線與直線交于點,過點與軸平行的直線與拋物線交于點.
(1)求點的坐標;
(2)求證:直線恒過定點;
(3)在(2)的條件下過向軸做垂線,垂足為,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com