已知圓的圓心在坐標(biāo)原點O,且恰好與直線相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點A為圓上一動點,AN軸于N,若動點Q滿足(其中m為非零常數(shù)),試求動點的軌跡方程.
(3)在(2)的結(jié)論下,當(dāng)時,得到動點Q的軌跡曲線C,與垂直的直線與曲線C交于 B、D兩點,求面積的最大值.
(1);(2);(3).

試題分析:(1)求圓的方程,已經(jīng)已知圓心坐標(biāo),只要再求得圓的半徑即可,而圓心的半徑等于圓心到切線的距離;(2)本題動點可以看作是由動點的運動成生成的,因此可以用動點轉(zhuǎn)移法求點的軌跡方程,具體方法就是設(shè),,利用條件,求出的關(guān)系,并且用來表示,然后把代入(1)中圓的方程,就能求得動點為的軌跡方程;(3)時,曲線的方程為,直線垂直,其方程可設(shè)為,這條直線與曲線相交,由此可求得的取值范圍,而的面積應(yīng)該表示為的函數(shù),然后利用函數(shù)的知識或不等式的知識求得最值.
試題解析:(1)設(shè)圓的半徑為,圓心到直線距離為,則
所以,圓的方程為
(2)設(shè)動點,,軸于,
由題意,,所以 即: ,
代入,得動點的軌跡方程.
(3)時,曲線方程為,設(shè)直線的方程為
設(shè)直線與橢圓交點
聯(lián)立方程
因為,解得,且
又因為點到直線的距離 
 .(當(dāng)且僅當(dāng)
時取到最大值)面積的最大值為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點,且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),分別是橢圓的左、右焦點,過作傾斜角為的直線交橢圓,兩點, 到直線的距離為,連接橢圓的四個頂點得到的菱形面積為.
(1)求橢圓的方程;
(2)已知點,設(shè)是橢圓上的一點,過、兩點的直線軸于點,若, 求的取值范圍;
(3)作直線與橢圓交于不同的兩點,,其中點的坐標(biāo)為,若點是線段垂直平分線上一點,且滿足,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為,且||=2,
點(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,過拋物線y2=2px (p>0)的焦點F的直線l交拋物線于點A、B,交其準(zhǔn)線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線方程為(  )

A.y2=9x           B.y2=6x
C.y2=3x           D.y2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心為坐標(biāo)原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=(a為長半軸,c為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點,過點F作OM的垂線與以O(shè)M為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓E:+=1(a>b>0)的左、右焦點分別為F1,F2,焦距為2,過F1作垂直于橢圓長軸的弦PQ,|PQ|為3.
(1)求橢圓E的方程;
(2)若過F1的直線l交橢圓于A,B兩點,判斷是否存在直線l使得∠AF2B為鈍角,若存在,求出l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,A(-2,0),B(2,0),點P為動點,且直線AP與直線BP的斜率之積為-.
(1)求動點P的軌跡C的方程;
(2)過點D(1,0)的直線l交軌跡C于不同的兩點MN,△MON的面積是否存在最大值?若存在,求出△MON的面積的最大值及相應(yīng)的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A(x1,y1),B(x2,y2)是橢圓C=1(a>b>0)上兩點,已知m,n,若m·n=0且橢圓的離心率e,短軸長為2,O為坐標(biāo)原點.
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案