若集合A={x|loga(x-1)<1,a>0且a≠1},
(1)若a=2,求集合A;
(2)若3∈A,求實數(shù)a的取值范圍.
考點:對數(shù)函數(shù)的單調(diào)性與特殊點
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)若a=2,利用對數(shù)函數(shù)的單調(diào)性和特殊點,解對數(shù)不等式log2(x-1)<1,求得x的范圍,可得集合A.
(2)由3∈A,可得loga2<1=logaa,由此求得a的范圍.
解答: 解:(1)若a=2,則集合A={x|log2(x-1)<1,a>0且a≠1}={x|log2(x-1)<1=log22}={x|1<x<3}.
(2)∵3∈A,∴l(xiāng)oga2<1=logaa,
0<a<1
2>a
a>1
2<a
,
∴a的范圍為 0<a<1,或a>2.
點評:本題主要考查對數(shù)函數(shù)的單調(diào)性和特殊點,對數(shù)不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為A,B,C的對邊,已知cos2A=-
1
4

(1)求sinA;
(2)當(dāng)c=2,2sinC=sinA時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ex+5x-5零點所在的區(qū)間為( 。
A、(-2,-1)
B、(-1,0)
C、(0,1)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“方程
x2
m2
+
y2
n2
=1表示焦點在y軸上的橢圓”是“n>m>0”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線kx+y-1=0(k∈R)與圓x2+y2-2y=0的位置關(guān)系是( 。
A、相交B、相切
C、相離D、與k值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,
a2+a3
a1+a2
=2,a4=8,則a6=( 。
A、31B、32C、63D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log0.5(3-x),則函數(shù)f(x)的( 。
A、單調(diào)遞增區(qū)間是(-∞,3)
B、單調(diào)遞增區(qū)間(0,3)
C、單調(diào)遞減區(qū)間是(-∞,3)
D、單調(diào)遞減區(qū)間(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,a8=58,an+1=an+cn(c為常數(shù)),則c的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x>0},B={x|x≤1},則A∩B=( 。
A、{x|x>0}
B、{x|x≤1}
C、{x|0<x≤1}
D、R

查看答案和解析>>

同步練習(xí)冊答案