【題目】已知關(guān)于的不等式 的解集為.
(1)若,求的取值范圍;
(2)若存在兩個(gè)不相等負(fù)實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍;
(3)若恰有三個(gè)整數(shù)、、在集合中,求的取值范圍.
【答案】(1);(2);(3)
【解析】
(1)根據(jù)解集,分為和進(jìn)行討論,分別得到的范圍,得到答案;(2)根據(jù)解集,可得,根據(jù)為兩個(gè)不相等負(fù)實(shí)數(shù),得到,根據(jù)韋達(dá)定理,得到的不等式,解出的范圍,得到答案;(3)根據(jù)解集中恰有個(gè)整數(shù),得到,設(shè)并判斷出滿足題意,根據(jù)對(duì)稱性得到也滿足,則要求時(shí),,從而得到關(guān)于的不等式,解出的范圍,得到答案.
(1)不等式,其解集
①當(dāng)時(shí),恒成立,符合題意;
②當(dāng)時(shí),則,即
解得
綜上所述:
(2)因?yàn)椴坏仁?/span>的解集為,
且為兩個(gè)不相等負(fù)實(shí)數(shù),
可得,即
解得
綜上可得,.
(3)解集中恰有個(gè)整數(shù),可得
設(shè),開(kāi)口向下,對(duì)稱軸為,
可得,
可知解集中的三個(gè)整數(shù)一定有和,
根據(jù)二次函數(shù)的對(duì)稱性得到,還有一個(gè)整數(shù)一定為,
此時(shí)已滿足解集中恰有三個(gè)整數(shù),則要求
,即
解得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新高考最大的特點(diǎn)就是取消文理分科,除語(yǔ)文、數(shù)學(xué)、外語(yǔ)之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門(mén)科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對(duì)全文(選擇政治、歷史、地理)的選擇是否與性別有關(guān),從某學(xué)校高一年級(jí)的1000名學(xué)生中隨機(jī)抽取男生,女生各25人進(jìn)行模擬選科.經(jīng)統(tǒng)計(jì),選擇全文的人數(shù)比不選全文的人數(shù)少10人.
(1)估計(jì)在男生中,選擇全文的概率.
(2)請(qǐng)完成下面的列聯(lián)表;并估計(jì)有多大把握認(rèn)為選擇全文與性別有關(guān),并說(shuō)明理由;
選擇全文 | 不選擇全文 | 合計(jì) | |
男生 | 5 | ||
女生 | |||
合計(jì) |
附:,其中.
P() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近個(gè)月廣告投入量(單位:萬(wàn)元)和收益(單位:萬(wàn)元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說(shuō)明理由;
(Ⅱ)殘差絕對(duì)值大于的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:
(ⅰ)剔除異常數(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時(shí),該模型收益的預(yù)報(bào)值是多少?
附:對(duì)于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某圓的極坐標(biāo)方程為,求
(1)圓的普通方程和參數(shù)方程;
(2)圓上所有點(diǎn)中的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的上頂點(diǎn)為A,以A為圓心,橢圓的長(zhǎng)半軸為半徑的圓與y軸的交點(diǎn)分別為、.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過(guò)點(diǎn)A的直線與橢圓交于P、Q兩點(diǎn),且,試探究直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地?cái)M建造一座體育館,其設(shè)計(jì)方案?jìng)?cè)面的外輪廓線如圖所示:曲線是以點(diǎn)為圓心的圓的一部分,其中,是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.
(1)若米,米,求與的值;
(2)若體育館側(cè)面的最大寬度不超過(guò)75米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信已成為人們常用的社交軟件,“微信運(yùn)動(dòng)”是由騰訊開(kāi)發(fā)的一個(gè)類(lèi)似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào).手機(jī)用戶可以通過(guò)關(guān)注“微信運(yùn)動(dòng)”公眾號(hào)查看自己每天行走的步數(shù),同時(shí)也可以和好友進(jìn)行運(yùn)動(dòng)量的PK或點(diǎn)贊.現(xiàn)從小明的微信朋友圈內(nèi)隨機(jī)選取了50人(男、女各25人),并記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:
步數(shù) 性別 | 0~3000 | 3001~6000 | 6001~9000 | 9001~12000 | >12000 |
男 | 1 | 1 | 3 | 15 | 5 |
女 | 0 | 4 | 11 | 8 | 2 |
若某人一天走路的步數(shù)超過(guò)9000步被系統(tǒng)評(píng)定為“積極型”,否則被系統(tǒng)評(píng)定為“懈怠型”。
(1)利用樣本估計(jì)總體的思想,估計(jì)小明的所有微信好友中每日走路步數(shù)超過(guò)12000步的概率;
(2)根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有99.5%的把握認(rèn)為“評(píng)定類(lèi)型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com