函數(shù)y=ln(x+2)在點(diǎn)(-1,0)處的切線方程為( 。
A、x+y+1=0
B、x-y+1=0
C、x-2y+1=0
D、x+2y+1=0
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)y=ln(x+2)在x=-1處的導(dǎo)數(shù),由直線方程的點(diǎn)斜式得切線方程.
解答: 解:由y=ln(x+2),得y=
1
x+2
,
∴y′|x=-1=1,
即函數(shù)y=ln(x+2)在點(diǎn)(-1,0)處的切線的斜率為1,
∴函數(shù)y=ln(x+2)在點(diǎn)(-1,0)處的切線方程為y=1×(x+1),
即x-y+1=0.
故選:B.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)處的切線方程,曲線過(guò)某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某四棱錐的三視圖如圖所示,則該四棱錐的體積是( 。
A、27
B、9
C、3
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若某程序框圖如圖所示,則輸出的n的值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)四面體的四個(gè)頂點(diǎn)在空間直角坐標(biāo)系O-xyz中的坐標(biāo)分別是(0,0,0),(1,2,0),(0,2,2),(3,0,1),則該四面體中以yOz平面為投影面的正視圖的面積為( 。
A、3
B、
5
2
C、2
D、
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,A={x|x2-2x≤0},B={y|y=cosx,x∈R},則圖中陰影部分表示的區(qū)間是( 。
A、[0,1]
B、[-1,2]
C、(-∞,-1)∪(2,+∞)
D、(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入a=2,那么輸出的結(jié)果為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一次對(duì)某班42名學(xué)生參加課外籃球、排球興趣小組(每人參加且只參加一個(gè)興趣小組)情況調(diào)查中,經(jīng)統(tǒng)計(jì)得到如下2×2列聯(lián)表:(單位:人)
籃球 排球 總計(jì)
男同學(xué) 16 6 22
女同學(xué) 8 12 20
總計(jì) 24 18 42
(Ⅰ)據(jù)此判斷是否有95%的把握認(rèn)為參加“籃球小組”或“排球小組”與性別有關(guān)?
(Ⅱ)在統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從兩個(gè)興趣小組中隨機(jī)抽取7名同學(xué)進(jìn)行座談.已知甲、乙、丙三人都參加“排球小組”.
①求在甲被抽中的條件下,乙丙也都被抽中的概率;
②設(shè)乙、丙兩人中被抽中的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
下面臨界值表供參考:
P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓E的圓心在x軸上,且與y軸切于原點(diǎn).過(guò)拋物線y2=2px(p>0)焦點(diǎn)F作垂直于x軸的直線l分別交圓和拋物線于A、B兩點(diǎn).已知l截圓所得的弦長(zhǎng)為
3
,且2
FA
=
3
FB

(Ⅰ)求圓和拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)若P在拋物線運(yùn)動(dòng),M、N在y軸上,且⊙E的切線PM(其中B為切點(diǎn))且PN⊙E與有一個(gè)公共點(diǎn),求△PMN面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)點(diǎn)P在曲線y=x2,從原點(diǎn)向A(2,4)移動(dòng),讓直線OP與曲線y=x2所圍成圖形面積為S1,直線OP、直線x=2與曲線y=x2所圍成圖形的面積為S2
(1)當(dāng)S1=S2時(shí),求點(diǎn)P的坐標(biāo);
(2)當(dāng)S1+S2有最小值時(shí),求點(diǎn)P的坐標(biāo)及此最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案