已知數(shù)列a,b,c是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為d(d>0).在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q.
(1)求證:|q|>1;
(2)若a=1,n=1,求d的值;
(3)若插入的n個(gè)數(shù)中,有s個(gè)位于a,b之間,t個(gè)位于b,c之間,且s,t都為奇數(shù),試比較s與t的大小,并求插入的n個(gè)數(shù)的乘積(用a,c,n表示).
【答案】分析:(1)先由條件求出知,又有c=a+2d代入即可得|qn+2|>1,就可證明結(jié)論;
(2)先求出b=1+d,c=1+2d,然后對(duì)插入的數(shù)分所在位置所存在的兩種情況分別求出d的值即可;
(3)先由條件求得|q|s+1>|q|t+1⇒s>t.然后再對(duì)q所存在的可為正數(shù),也可為負(fù)數(shù)兩種情況分別求出插入的n個(gè)數(shù)的乘積即可.
解答:解:(1)由題意知,c=a+2d,
又a>0,d>0,可得,(2分)
即|qn+2|>1,故|q|n+2>1,又n+2是正數(shù),故|q|>1.(4分)
(2)由a,b,c是首項(xiàng)為1、公差為d的等差數(shù)列,故b=1+d,c=1+2d,
若插入的這一個(gè)數(shù)位于a,b之間,則1+d=q2,1+2d=q3,
消去q可得(1+2d)2=(1+d)3,即d3-d2-d=0,其正根為.(7分)
若插入的這一個(gè)數(shù)位于b,c之間,則1+d=q,1+2d=q3,
消去q可得1+2d=(1+d)3,即d3+3d2+d=0,此方程無(wú)正根.
故所求公差. (9分)
(3)由題意得,,又a>0,d>0,
,可得,又,
故qs+1>qt+1>0,即|q|s+1>|q|t+1
又|q|>1,故有s+1>t+1,即s>t. (12分)
設(shè)n+3個(gè)數(shù)所構(gòu)成的等比數(shù)列為an,則,
由akan+4-k=a1an+3=ac(k=2,3,4,n+2),
可得(a2a3an+22=(a2an+2)(a3an+1)(an+1a3)(an+2a2)=(ac)n+1,(14分)
,
由s,t都為奇數(shù),則q既可為正數(shù),也可為負(fù)數(shù),
①若q為正數(shù),則a2a3an+2=,插入n個(gè)數(shù)的乘積為
②若q為負(fù)數(shù),a2,a3,an+2中共有個(gè)負(fù)數(shù),
故a2a3,所插入的數(shù)的乘積為
所以當(dāng)n=4k-2(k∈N*)時(shí),所插入n個(gè)數(shù)的積為;
當(dāng)n=4k(k∈N*)時(shí),所插入n個(gè)數(shù)的積為.(18分)
點(diǎn)評(píng):本題綜合考查等差數(shù)列與等比數(shù)列的基礎(chǔ)知識(shí)以及分類(lèi)討論思想在解題中的應(yīng)用.本題的前二問(wèn)比較基礎(chǔ),第三問(wèn)比較麻煩,適合程度較高的學(xué)生解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列a,b,c是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為d(d>0).在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q.
(1)求證:|q|>1;
(2)若a=1,n=1,求d的值;
(3)若插入的n個(gè)數(shù)中,有s個(gè)位于a,b之間,t個(gè)位于b,c之間,且s,t都為奇數(shù),試比較s與t的大小,并求插入的n個(gè)數(shù)的乘積(用a,c,n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•蚌埠二模)已知數(shù)列a,b,c是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為d(d>0),在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q.
(I)求證:|q|>1;
(II)若a=1,n=1,求d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:蚌埠二模 題型:解答題

已知數(shù)列a,b,c是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為d(d>0),在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q.
(I)求證:|q|>1;
(II)若a=1,n=1,求d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市盧灣區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知數(shù)列a,b,c是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為d(d>0).在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q.
(1)求證:|q|>1;
(2)若a=1,n=1,求d的值;
(3)若插入的n個(gè)數(shù)中,有s個(gè)位于a,b之間,t個(gè)位于b,c之間,且s,t都為奇數(shù),試比較s與t的大小,并求插入的n個(gè)數(shù)的乘積(用a,c,n表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案