(2014•泉州模擬)若函數(shù)y=f(x)滿足:集合A={f(n)|n∈N*}中至少有三個(gè)不同的數(shù)成等差數(shù)列,則稱函數(shù)f(x)是“等差源函數(shù)”,則下列四個(gè)函數(shù)中,“等差源函數(shù)”的個(gè)數(shù)是( )
①y=2x+1;
②y=log2x;
③y=2x+1;
④y=sin(x+)
A.1 B.2 C.3 D.4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:填空題
(2014•陜西二模)如圖,已知PA是⊙O的切線,A為切點(diǎn).PC是⊙O的一條割線,交⊙O于B,C兩點(diǎn),點(diǎn)Q是弦BC的中點(diǎn).若圓心O在∠APB內(nèi)部,則∠OPQ+∠PAQ的度數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:選擇題
在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑等于( )
A.3.2cm B.3.4cm C.3.6cm D.4.0cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習(xí)卷(解析版) 題型:選擇題
要證明+<2,可選擇的方法有以下幾種,其中最合理的是( )
A.綜合法 B.分析法 C.反證法 D.歸納法
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習(xí)卷(解析版) 題型:選擇題
(2014•合肥一模)對于函數(shù)f(x),若?a,b,c∈R,f(a),f(b),f(c)都是某一三角形的三邊長,則稱f(x)為“可構(gòu)造三角形函數(shù)”.以下說法正確的是( )
A.f(x)=1(x∈R)不是“可構(gòu)造三角形函數(shù)”
B.“可構(gòu)造三角形函數(shù)”一定是單調(diào)函數(shù)
C.f(x)=是“可構(gòu)造三角形函數(shù)”
D.若定義在R上的函數(shù)f(x)的值域是(e為自然對數(shù)的底數(shù)),則f(x)一定是“可構(gòu)造三角形函數(shù)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修1-2 3.2數(shù)學(xué)證明練習(xí)卷(解析版) 題型:選擇題
(2014•安徽模擬)若數(shù)列{an}滿足:存在正整數(shù)T,對于任意正整數(shù)n都有an+T=an成立,則稱數(shù)列{an}為周期數(shù)列,周期為T.已知數(shù)列{an}滿足a1=m(m>0),an+1=則下列結(jié)論中錯(cuò)誤的是( )
A.若m=,則a5=3
B.若a3=2,則m可以取3個(gè)不同的值
C.若m=,則數(shù)列{an}是周期為3的數(shù)列
D.?m∈Q且m≥2,數(shù)列{an}是周期數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修1-2 3.2數(shù)學(xué)證明練習(xí)卷(解析版) 題型:選擇題
(2014•河南二模)從1開始的自然數(shù)按如圖所示的規(guī)則排列,現(xiàn)有一個(gè)三角形框架在圖中上下或左右移動,使每次恰有九個(gè)數(shù)在此三角形內(nèi),則這九個(gè)數(shù)的和可以為( )
A.2097 B.2112 C.2012 D.2090
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修1-2 2.2結(jié)構(gòu)圖練習(xí)卷(解析版) 題型:選擇題
如圖所示,在“推理與證明”的知識結(jié)構(gòu)圖中,如果要加入“綜合法”,則應(yīng)該放在( )
A.“合情推理”的下位 B.“演繹推理”的下位
C.“直接證明”的下位 D.“間接證明”的下位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com