17.已知函數(shù)y=f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=$\frac{x}{{4}^{x}}$,則f(-$\frac{1}{2}$)=-$\frac{1}{4}$.

分析 由題意利用f(-$\frac{1}{2}$)=-f($\frac{1}{2}$),計(jì)算求的結(jié)果.

解答 解:∵函數(shù)y=f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=$\frac{x}{{4}^{x}}$,
則f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-$\frac{\frac{1}{2}}{{4}^{\frac{1}{2}}}$=-$\frac{1}{4}$,
故答案為:$-\frac{1}{4}$.

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知f(x)=sinx-cosx-ax.
(1)若f(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上單調(diào),求實(shí)數(shù)a的取值范圍;
(2)證明:當(dāng)$a=\frac{2}{π}$時(shí),f(x)≥-1在x∈[0,π]上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.拋物線(xiàn)x2=4y的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,經(jīng)過(guò)F且傾斜角為$\frac{π}{6}$的直線(xiàn)與拋物線(xiàn)在y軸右側(cè)的部分相交于點(diǎn)A,AK⊥l,垂足為K,則△AKF的面積是(  )
A.4B.$4\sqrt{3}$C.1D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列說(shuō)法正確的是( 。
A.0與{x|x≤4且x≠±1}的意義相同
B.高一(1)班個(gè)子比較高的同學(xué)可以形成一個(gè)集合
C.集合A={(x,y)|3x+y=2,x∈N}是有限集
D.方程x2+2x+1=0的解集只有一個(gè)元素

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列四個(gè)函數(shù):
①y=3-x;②y=2x-1(x>0);③y=x2+2x-10,;④$\left\{\begin{array}{l}{x(x≤0)}\\{\frac{1}{x}(x>0)}\end{array}\right.$.
其中定義域與值域相同的函數(shù)有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1-{x}^{2}}{1+{x}^{2}}$.
( I)判斷f(x)的奇偶性;          
( II)求證:f(x)+f($\frac{1}{x}$)為定值;
(III)求$f(\frac{1}{2017})$+$f(\frac{1}{2016})$+$f(\frac{1}{2015})$+f(1)+f(2015)+f(2016)+f(2017)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.滿(mǎn)足條件{a}⊆A⊆{a,b,c}的所有集合A的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在平行四邊形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,沿△ABD沿BD折起,使平面ABD⊥平面BCD,且2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,則三棱錐A-BCD的外接球的半徑為( 。
A.1B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.有以下四個(gè)命題:
①函數(shù)y=sin2x+$\frac{3}{si{n}^{2}x}$的最小值是2$\sqrt{3}$;
②已知f(x)=$\frac{x-\sqrt{11}}{x-\sqrt{10}}$,則f(4)<f(3);
③定義在R上的奇函數(shù)f(x)滿(mǎn)足f(x+1)=-f(x),則f(2016)=0;
④y=loga(2+ax)(a>0,a≠1)在R上是增函數(shù).
其中真命題的序號(hào)是②③④.

查看答案和解析>>

同步練習(xí)冊(cè)答案