A. | 其中一條對稱軸方程為$x=-\frac{π}{6}$ | B. | 在區(qū)間$[{\frac{π}{12},\frac{7π}{12}}]$上單調遞增 | ||
C. | 當$x=\frac{π}{12}+kπ({k∈Z})$時取得最大值 | D. | 在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調遞增 |
分析 由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律求得所得函數的解析式,再根據正弦函數的奇偶性得出結論.
解答 解:將函數$f(x)=3sin({2x+\frac{π}{3}})$的圖象向右平移$\frac{π}{2}$個單位長度,
所得圖象對應的函數為y=3sin[2(x-$\frac{π}{2}$)+$\frac{π}{3}$]=3sin(2x-$\frac{2π}{3}$),
對于A,由x=-$\frac{π}{6}$,可得:y=0≠±3,錯誤;
對于C,當$x=\frac{π}{12}+kπ({k∈Z})$時可得y=3sin(2kπ-$\frac{π}{2}$)=-3,錯誤;
由于,令2kπ-$\frac{π}{2}$≤2x-$\frac{2π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,解得:kπ-$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,k∈Z,
可得:函數的單調遞增區(qū)間為:[kπ-$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z,
故選:B.
點評 本題主要考查了y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數的圖象和性質的應用,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | (0,4] | B. | (-∞,4] | C. | (-4,0] | D. | [4,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{6}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 外切 | B. | 相離 | C. | 相交 | D. | 內切 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com