已知函數(shù)f(x)=
log2x,x>0
2x,x≤0
,則f(f(
1
2
))的值是
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的表達式,直接代入即可.
解答: 解:由分段函數(shù)可得f(
1
2
)=log2
1
2
=-1
,
∴f(f(
1
2
))=2-1=
1
2
,
故答案為:
1
2
點評:本題主要考查函數(shù)值的計算,利用分段函數(shù)直接代入即可得到結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+
1
a
)-ax,其中a∈R且a≠0.
(1)討論f(x)的單調(diào)性;
(2)若不等式f(x)<ax恒成立,求實數(shù)a取值范圍;
(3)若方程f(x)=0存在兩個異號實根x1,x2,求證:x1+x2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示為函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象.
(1)根據(jù)圖象求函數(shù)y=f(x)的解析式.
(2)求函數(shù)y=f(x)在區(qū)間[0,
π
2
]上的值域.
(3)求出y=f(x),x∈[
π
6
,π]時的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,
x2+9
>3”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項和為Sn=3n-1,則其公比q為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x-1≤0
x+y-1≥0
y-2≤0
,則z=2x+3y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)的圖象如圖所示,則該函數(shù)的解析式為y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正實數(shù)a,b滿足a+b=2,則
1
a
+
a
8b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)F(x)在[a,b]上有定義,若對于任意x1、x2在定義域內(nèi)有F(
x1+x2
2
)≤0.5[F(x1)+F(x2)],則稱F(x)在[a,b]有性質(zhì)P.設(shè)F(x)在[1,3]上具有性質(zhì)P,現(xiàn)給出一下命題:
A.F(x)在[1,3]上的圖象是連續(xù)不斷的;
B.F(x2)在[1,
3
]上有性質(zhì)P;
C.若F(x)在x=2時取得最大值1,則F(x)=1,x∈[1,3];
D.對任意x1,x2,x3,x4∈[1,3],有F(
x1+x2+x3+x4
4
)≤0.25[F(x1)+F(x2)+F(x3)+F(x4)].
其中,真命題有
 

查看答案和解析>>

同步練習(xí)冊答案