【題目】數(shù)列,定義為數(shù)列的一階差分?jǐn)?shù)列,其中.

(1),試斷是否是等差數(shù)列,并說明理由;

(2)證明是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

(3)對(duì)(2)中的數(shù)列,是否存在等差數(shù)列,使得對(duì)一切都成立,若存在,求出數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說明理由.

【答案】1是等差數(shù)列,理由見解析;(2)證明見解析,;(3)存在,且.

【解析】

1)通過計(jì)算證得是等差數(shù)列.

2)根據(jù),得到,利用湊配法證得是等差數(shù)列,并求得數(shù)列的通項(xiàng)公式.

3)先求得,由此求得,再利用組合數(shù)公式,證得符合要求.

1)由于,所以,所以,且.所以是首項(xiàng)為,公差為的等差數(shù)列.

2)由于,所以,即,兩邊除以,所以是首項(xiàng)為,公差為的等差數(shù)列,故,即.

3)存在,且符合題意.

依題意.當(dāng)時(shí),;當(dāng)時(shí),,即,而是等差數(shù)列,故只能.下證符合題意.

由于,所以根據(jù)組合數(shù)公式有符合題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù)).

(Ⅰ)討論極值點(diǎn)的個(gè)數(shù);

(Ⅱ)若的一個(gè)極值點(diǎn),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面內(nèi)兩條直線相交于點(diǎn),構(gòu)成的四個(gè)角中的銳角為.對(duì)于平面上任意一點(diǎn),若分別是到直線的距離,則稱有序非負(fù)實(shí)數(shù)對(duì)是點(diǎn)的“距離坐標(biāo)”,給出下列四個(gè)命題:

點(diǎn)有且僅有兩個(gè);

點(diǎn)有且僅有4個(gè);

③若,則點(diǎn)的軌跡是兩條過點(diǎn)的直線;

④滿足的所有點(diǎn)位于一個(gè)圓周上.

其中正確命題的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論上的零點(diǎn)個(gè)數(shù);

(2)當(dāng)時(shí),若存在,使,求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)的底數(shù),其值為2.71828……)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)統(tǒng)計(jì),用于數(shù)學(xué)學(xué)習(xí)的時(shí)間(單位:小時(shí))與成績(jī)(單位:分)近似于線性相關(guān)關(guān)系.對(duì)某小組學(xué)生每周用于數(shù)學(xué)的學(xué)習(xí)時(shí)間與數(shù)學(xué)成績(jī)進(jìn)行數(shù)據(jù)收集如下:

由樣本中樣本數(shù)據(jù)求得回歸直線方程為,則點(diǎn)與直線的位置關(guān)系是( )

A. B.

C. D. 的大小無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)經(jīng)典名著,其中有這樣一個(gè)問題:今有圓材,埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長(zhǎng)一尺.問徑幾何?其意為:今有-圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該木材,鋸口深一寸,鋸道長(zhǎng)-尺.問這塊圓柱形木材的直徑是多少?現(xiàn)有長(zhǎng)為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻體中的體積約為__________立方寸.(結(jié)果保留整數(shù))

注:l丈=10尺=100寸,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若,的兩個(gè)零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,的中點(diǎn),是等邊三角形,平面平面.

(Ⅰ)求證:平面;

(Ⅱ)求二面角大小的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C經(jīng)過伸縮變換得到曲線E,直線lt為參數(shù))與曲線E交于AB兩點(diǎn),

1)設(shè)曲線C上任一點(diǎn)為,求的最小值;

2)求出曲線E的直角坐標(biāo)方程,并求出直線l被曲線E截得的弦AB長(zhǎng);

查看答案和解析>>

同步練習(xí)冊(cè)答案