【題目】設(shè)是在點(diǎn)處的切線.
()求的解析式.
()求證: .
()設(shè),其中.若對(duì)恒成立,求的取值范圍.
【答案】(1);(2)見解析;(3)
【解析】試題分析:(1)第(1)問,利用導(dǎo)數(shù)的幾何意義求切線方程即得y=f(x). (2)第(2)問,轉(zhuǎn)化成證明,即證明[f(x)-g(x)]的最大值小于等于零.(3),第(3)問,對(duì)a分類討論,求函數(shù)的單調(diào)區(qū)間和最小值,找到a的范圍.
試題解析:
()由得,∴, ,
∴在點(diǎn)處的切線方程為: ,即,
∴的解析式為: .
()令,則,
由得,由,得,
∴在上單調(diào)遞增,在上單調(diào)遞減,
∴,即,∴.
()的定義域是,且.
①時(shí),由()得: ,
∴,
∴在上單調(diào)遞增,∴恒成立,符合題意;
②時(shí),由,且的導(dǎo)數(shù),
∴在區(qū)間上單調(diào)遞增,
∵, ,
∴存在,使得,
∴在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴,
此時(shí), 不可能恒成立,不符合題意,
綜上所述, 的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=2,直線.l:y=kx-2.
(1)若直線l與圓O相切,求k的值;
(2)若直線l與圓O交于不同的兩點(diǎn)A,B,當(dāng)∠AOB為銳角時(shí),求k的取值范圍;
(3)若,P是直線l上的動(dòng)點(diǎn),過P作圓O的兩條切線PC,PD,切點(diǎn)為C,D,探究:直線CD是否過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)利用國慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 低碳族的人數(shù) | 占本組的頻率 |
第一組 | 120 | 0.6 | |
第二組 | 195 | ||
第三組 | 100 | 0.5 | |
第四組 | 0.4 | ||
第五組 | 30 | 0.3 | |
第六組 | 15 | 0.3 |
(1)補(bǔ)全頻率分布直方圖并求、、的值;
(2)從歲年齡段的“低碳族”中采用分層抽樣法抽取18人參加戶外低碳體驗(yàn)活動(dòng),如何抽。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,且相鄰的兩個(gè)最值點(diǎn)的距離為.
(1)求函數(shù)的解析式;
(2)若將函數(shù)的圖象向左平移1個(gè)單位長度后得到函數(shù)的圖象,關(guān)于的不等式在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn),平行于的直線在軸上的截距為,直線交橢圓于兩個(gè)不同點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}.
(1)若a=3,求(RP)∩Q;
(2)若P∪Q=Q,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠要建造一個(gè)長方形無蓋蓄水池,其容積為立方米,深為.如果池底每平方米的造價(jià)為元,池壁每平方米的造價(jià)為元,那么怎樣設(shè)計(jì)水池能使總造價(jià)最低(設(shè)蓄水池池底的相鄰兩邊邊長分別為,)?最低總造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(Ⅰ)證明 PA//平面EDB;
(Ⅱ)證明PB⊥平面EFD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com