【題目】設命題p:方程x2+2m-4x+m=0有兩個不等的實數(shù)根:命題qx[2,3],不等式x2-4x+13≥m2恒成立.

1)若命題p為真命題,則實數(shù)m的取值范圍;

2)若命題pq為真命題,命題pq為假命題,求實數(shù)m的取值范圍.

【答案】(1)m4m1;(2m-3或1≤m≤3或m4

【解析】

1)根據(jù)一元二次方程根與判別式△的關系求出m的范圍即可.

2)求出命題pq為真命題的等價條件,結合復合命題真假關系進行求解即可.

1)若命題p為真命題,則判別式△=2m-42-4m=4m-1)(m-4)>0,

解得m4m1

2)若命題q為真命題,則(x-22m2-9[23]恒成立.

∵當x=2時,(x-22取得最小值0

則0≥m2-9,即m2≤3,解得

“若命題pq為真命題,命題pq為假命題,所以命題pq中一真一假,

p真且q假時,,得m-3m4,

p假且q真時,,解得1≤m≤3.

綜上所述:m-3或1≤m≤3或m4

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:

(1)函數(shù)的圖象關于點對稱;

(2)函數(shù)在區(qū)間內(nèi)是增函數(shù);

(3)函數(shù)是偶函數(shù);

(4)存在實數(shù),使;

(5)如果函數(shù)的圖象關于點中心對稱,那么的最小值為.

其中正確的命題的序號是___________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站退出了關于生態(tài)文明建設進展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護問題仍是百姓最為關心的熱點,參與調(diào)查者中關注此問題的約占.現(xiàn)從參與關注生態(tài)文明建設的人群中隨機選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)求出的值;

(2)求這200人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)(精確到小數(shù)點后一位);

(3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調(diào)查,求這2組恰好抽到2人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,E是PC的中點,底面ABCD為矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點F.

(1)求證:EF∥平面PAB;

(2)若PB與平面ABCD所成角的正弦值為,求二面角P-AE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體, , ,且兩兩垂直.給出下列四個命題:

①三棱錐的體積為定值;

②經(jīng)過四點的球的直徑為;

③直線∥平面;

④直線所成的角為;

其中真命題的個數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=x+

1)若關于x的不等式f3x)≤m3x+2[-2,2]上恒成立.求實數(shù)m的取值范圍;

2)若函數(shù)gx=f|2x-1|-3t-2有四個不同的零點,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】試用恰當?shù)姆椒ū硎鞠铝屑?/span>.

1)使函數(shù)有意義的x的集合;

2)不大于12的非負偶數(shù);

3)滿足不等式的解集;

4)由大于10小于20的所有整數(shù)組成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了加強中學生實踐、創(chuàng)新和團隊建設能力的培養(yǎng),促進教育教學改革,市教育局舉辦了全市中學生創(chuàng)新知識競賽,某中學舉行了選拔賽,共有150名學生參加,為了了解成績情況,從中抽取50名學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,請你根據(jù)尚未完成的頻率分布表,解答下列問題:

(1)完成頻率分布表(直接寫出結果);

(2)若成績在90.5分以上的學生獲一等獎,試估計全校獲一等獎的人數(shù),現(xiàn)在從全校所有獲一等獎的同學中隨機抽取2名同學代表學校參加競賽,某班共有2名同學榮獲一等獎,求該班同學恰有1人參加競賽的概率.

分組

頻數(shù)

頻率

第1組

[60.5,70.5)

0.26

第2組

[70.5,80.5)

17

第3組

[80.5,90.5)

18

0.36

第4組

[90.5,100.5]

合計

50

1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黨的十八大以來,我國精準扶貧已經(jīng)實施了六年,我國貧困人口從2012年的9899萬人,減少到2018年的1660萬人,2019年將努力實現(xiàn)減少貧困人口1000萬人以上的目標,力爭2020年在現(xiàn)行標準下,農(nóng)村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當前扶貧領域存在的突出問題,市扶貧辦近三年來,每半年對貧困戶(用表示,單位:萬戶)進行取樣,統(tǒng)計結果如圖所示,從20166月底到20196月底的共進行了七次統(tǒng)計,統(tǒng)計時間用序號表示,例如:201612月底(時間序號為2)貧困戶為5.2萬戶.

(1)求關于的線性回歸方程,并預測到202012月底,該市能否實現(xiàn)貧困戶全部脫貧;

(2)為盡快打贏脫貧攻堅戰(zhàn),該市扶貧辦在20196月底時,對全市貧困戶隨機抽取了100戶貧困戶,對每個家庭最主要經(jīng)濟收入來源進行抽樣調(diào)查,統(tǒng)計結果如圖.并決定據(jù)此選派一批農(nóng)業(yè)技術人員對全市所有貧困戶中,家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入的貧困戶進行對口幫扶,每一名農(nóng)業(yè)技術人員對口幫扶貧困戶90戶,則該市應分別安排多少農(nóng)業(yè)技術人員對家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入的貧困戶進行對口幫扶?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

同步練習冊答案