已知正三棱柱ABC-A1B1C1的底面邊長為8,側(cè)棱長為6,D為AC中點.
(1)求證:AB1平面C1DB;
(2)求異面直線AB1與BC1所成角的余弦值.
(1)證明:如圖所示,
連接B1C交BC1于E,連接DE,
∵四邊形BCC1B1是平行四邊形,∴B1E=EC.
又AD=DC.
∴DEAB1,
而DE?平面C1DB,AB1?平面C1DB,
∴AB1平面C1DB.
(2)由(1)知∠DEB或其補角為異面直線AB1與BC1所成的角,
在△DEB中,DE=5,BD=4
3
,BE=5.
∴cos∠DEB=
52+52-(4
3
)2
2×5×5
=
1
25
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

正方體ABCDA1B1C1D1中,EF分別是BB1,CC1的中點,求異面直線AEBF所成

角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,則異面直線AC1與BB1所成的角為( 。
A.a(chǎn)rctan
2
2
3
B.a(chǎn)rccos
2
2
3
C.a(chǎn)rcsin
1
3
D.a(chǎn)rctan2
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

邊長為1的正方形ABCD沿對角線BD折起,形成三棱錐C-ABD,它的主視圖與俯視圖如圖所示,則異面直線AB與CD所成角為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

正方體ABCD-A1B1C1D1棱長為2,E是棱A1B1的中點.
(1)求異面直線A1B1與BD的距離;
(2)求直線EC1與BD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知三棱錐A-BCD的側(cè)視圖,俯視圖都是直角三角形,尺寸如圖所示.
(1)求異面直線AB與CD所成角的余弦值;
(2)在線段AC上是否存在點F,使得BF⊥面ACD?若存在,求出CF的長度;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知AA1與BB1是異面直線,且AA1=2,BB1=1,AB⊥BB1,A1B1⊥BB1,則AA1與BB1所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點
(1)證明:AD⊥D1F;
(2)求AE與D1F所成的角;
(3)證明:面AED⊥面A1FD1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

線段AB的長等于它在平面α上射影的2倍,則AB所在的直線和平面α所成的角為( 。
A.120°B.60°C.45°D.30°

查看答案和解析>>

同步練習冊答案