分析 由x的范圍求出|f(x)-g(x)|的范圍,由其最大值小于等于1求得a的范圍,可得當(dāng)1<a<6時(shí),f(x)與g(x)在給區(qū)間[0,1]上是“非接近”的;當(dāng)a≥6時(shí),f(x)與g(x)在給區(qū)間[0,1]上是“接近”的.
解答 解:|f(x)-g(x)|=|loga(x+2)-loga$\frac{1}{x+1}$|=|loga(x+1)(x+2)|.
令t=(x+1)(x+2).
當(dāng)x∈[0,1]時(shí),t∈[2,6].
∵a>1,∴|loga(x+1)(x+2)|=|logat|=logat∈[loga2,loga6].
由loga6≤1,得a≥6.
∴當(dāng)1<a<6時(shí),f(x)與g(x)在給區(qū)間[0,1]上是“非接近”的;
當(dāng)a≥6時(shí),f(x)與g(x)在給區(qū)間[0,1]上是“接近”的.
點(diǎn)評(píng) 本題考查對(duì)數(shù)函數(shù)的性質(zhì)和應(yīng)用,對(duì)題意的理解是解答該題的關(guān)鍵,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3+$\sqrt{2}$ | B. | 2+$\sqrt{3}$ | C. | 2+$\sqrt{2}$ | D. | 3+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({-∞,}\right.-\sqrt{2})∪(\sqrt{2},+∞)$ | B. | (-3$\sqrt{2}$,-$\sqrt{2}$)∪($\sqrt{2}$,3$\sqrt{2}$) | C. | $(-3\sqrt{2},3\sqrt{2})$ | D. | $(-\sqrt{2},\sqrt{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x-2y+3=0 | B. | 2x-y+3=0 | C. | 2x-4y+5=0 | D. | 2x+y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com