函數(shù)f(x)=x2+ax+1圖象上一點(diǎn)P到直線y=x的距離的最小值為
2
2
,則a的值為
 
考點(diǎn):二次函數(shù)的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)f(x)=x2+ax+1圖象上一點(diǎn)P到直線y=x的距離的最小值為
2
2
,故與直線y=x平行,且到y(tǒng)=x的距離為
2
2
的直線與函數(shù)圖象相切,結(jié)合二次函數(shù)的圖象和性質(zhì),可得答案.
解答: 解:設(shè)到直線y=x的距離為
2
2
的直線方程為:y=x+k,
|k|
2
=
2
2
,
解得k=±1,
又由函數(shù)f(x)=x2+ax+1圖象開(kāi)口朝上,
故函數(shù)f(x)=x2+ax+1圖象與y=x+1相切,
將y=x+1代入y=x2+ax+1得x2+(a-1)x=0,
由△=(a-1)2=0得:a=1,
故答案為:1
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),直線與拋物線的位置關(guān)系,難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin2xcos2x是(  )
A、周期為π的奇函數(shù)
B、周期為
π
2
的偶函數(shù)
C、周期為
π
2
的奇函數(shù)
D、周期為π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P,S,T為三個(gè)非空集合,已知x∈P是x∈S或x∈T成立的充要條件,則x∈S是x∈P成立的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x∈R|x2-x<0},B={x∈R||x|<2},則A∩B=( 。
A、B⊆AB、B∩A=A
C、B∪A=AD、B∪A=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=sinx+mcosx與g(x)=msinx+cosx給出以下結(jié)論:
①函數(shù)f(x)與g(x)有相同的值域.
②函數(shù)f(x)與g(x)的交點(diǎn)隨m的取值的變化而變化.
③函數(shù)f(x)的圖象經(jīng)過(guò)平移是不可能得到函數(shù)g(x) 圖象的.
④函數(shù)f(x)與g(x)圖象關(guān)于直線x=
π
4
對(duì)稱(chēng).
⑤存在 k∈z,使得函數(shù)f(x)與g(x)的初相和為
π
2
+2kπ(k∈Z)
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-3,4),B(9,0),C,D分別為線段OA,OB上的動(dòng)點(diǎn),且滿(mǎn)足AC=BD
(1)若AC=4,求直線CD的方程;
(2)證明:△OCD的外接圓恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)準(zhǔn)備舉行促銷(xiāo)活動(dòng),對(duì)選出的某品牌商品采用的促銷(xiāo)方案是有獎(jiǎng)銷(xiāo)售,即在該商品價(jià)格的基礎(chǔ)上將價(jià)格提高180元,同時(shí)允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都可獲得一定數(shù)額的獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)的概率為
1
2
,請(qǐng)問(wèn):商場(chǎng)應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為多少元,才能使促銷(xiāo)方案對(duì)自己有利(顧客獲獎(jiǎng)獎(jiǎng)金數(shù)的期望值不大于商場(chǎng)的提價(jià)數(shù)額)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)區(qū)間,若存在x0∈D,使f(x0)=-x0,則稱(chēng)x0是f(x)的一個(gè)“次不動(dòng)點(diǎn)”,也稱(chēng)f(x)在區(qū)間D上存在次不動(dòng)點(diǎn).若函數(shù)f(x)=ax2-3x-a+
5
2
在區(qū)間[1,4]上存在次不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0)
B、(0,
1
2
C、[
1
2
,+∞)
D、(-∞,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a 
1
2
+a -
1
2
=3(a>0),求
a
3
2
-a-
3
2
a
1
2
-a-
1
2
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案