【題目】在平面直角坐標系xOy中,已知動圓S過定點P(﹣2 ),且與定圓Q:(x﹣2 )2+y2=36相切,記動圓圓心S的軌跡為曲線C.
(1)求曲線C的方程;
(2)設曲線C與x軸,y軸的正半軸分別相交于A,B兩點,點M,N為橢圓C上相異的兩點,其中點M在第一象限,且直線AM與直線BN的斜率互為相反數(shù),試判斷直線MN的斜率是否為定值.如果是定值,求出這個值;如果不是定值,說明理由;
(3)在(2)條件下,求四邊形AMBN面積的取值范圍.
【答案】
(1)解:設圓S的半徑為R,
∵點 在圓 內,且兩圓相切
∴設PS=R,QS=6﹣R,
∴ ,
∴圓心S的軌跡為以P,Q為焦點,長軸長為6的橢圓
∴2a=6,2c=4 ,∴a=3,c=2 ,∴b2=1,
∴曲線C的方程為
(2)解:由(1)可知A(3,0),B(0,1)
設AM的斜率為k,則直線AM方程為y=k(x﹣3),直線BN方程為y=﹣kx+1
由 ,得M點坐標為 …
由 ,得
所以MN的斜率
(3)解:設MN的方程為 ,
由 ,得2x2+6mx+9m2﹣9=0
則 ,
A到直線MN的距離分別為
B到直線MN的距離分別為
所以四邊形AMBN面積 =
又﹣1<m<1,所以四邊形AMBN面積的取值范圍是
【解析】(1)根據(jù)兩圓相切可得出P S + Q S = P Q,進而得到圓心S的軌跡為以P,Q為焦點,長軸長為6的橢圓,利用已知求出橢圓的方程。(2)由斜截式求出兩條直線的方程,聯(lián)立它們與橢圓的方程,求出M、N兩點的坐標,進而求出MN的斜率。(3)聯(lián)立直線和橢圓的方程,消去y得到關于x的方程2x2+6mx+9m2﹣9=0,利用韋達定理,求出 x M+ x N 、xM .xN 的表達式,分別求出MN、以及A到直線MN的距離分別為 d1 和B到直線MN的距離分別為 d2,由題意四邊形AMBN面積 S = S △ AMN + S △ BMN= M N ( d 1 + d 2 ),再根據(jù)m的取值范圍進而得到邊形AMBN面積的取值范圍。
科目:高中數(shù)學 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=log2( +a).
(1)當a=5時,解不等式f(x)>0;
(2)若關于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個元素,求a的取值范圍.
(3)設a>0,若對任意t∈[ ,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次趣味校園運動會的頒獎儀式上,高一、高二、高三代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就座,其中高二代表隊有6人.
(1)求n的值;
(2)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;
(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,求該代表中獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為奇函數(shù),為實常數(shù).
(1)求的值;
(2)證明:在區(qū)間內單調遞增;
(3)若對于區(qū)間上的每一個的值,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,已知中心在原點,焦點在x軸上的雙曲線C的離心率為 ,且雙曲線C與斜率為2的直線l相交,且其中一個交點為P(﹣3,0).
(1)求雙曲線C的方程及它的漸近線方程;
(2)求以直線l與坐標軸的交點為焦點的拋物線的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱臺DEF ABC中,AB=2DE,G,H分別為AC,BC的中點.
(1)求證:平面ABED∥平面FGH;
(2)若CF⊥BC,AB⊥BC,求證:平面BCD⊥平面EGH.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產甲、乙兩種產品所得利潤分別為和(萬元),它們與投入資金(萬元)的關系有經驗公式,,今將150萬元資金投入生產甲、乙兩種產品,并要求對甲、乙兩種產品的投資金額不低于25萬元.
(1)設對乙產品投入資金萬元,求總利潤(萬元)關于的函數(shù)關系式及其定義域;
(2)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:y=f(x﹣1)的圖象關于(1,0)點對稱,且當x≥0時恒有f(x﹣ )=f(x+ ),當x∈[0,2)時,f(x)=ex﹣1,則f(2017)+f(﹣2016)=( )
A.1﹣e
B.﹣1﹣e
C.e﹣1
D.e+1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某上市股票在30天內每股的交易價格(元)與時間(天)組成有序對,點落在右方圖象中的兩條線段上,該股票在30天內(包括30天)的日交易量(萬股)與時間(天)的函數(shù)關系為: , ,
(1)根據(jù)提供的圖象,寫出該種股票每股的交易價格(元)與時間(天)所滿足的函數(shù)關系式;
(2)用(萬元)表示該股票日交易額,寫出關于的函數(shù)關系式,并求出這30天中第幾天日交易額最大,最大值為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com