設(shè)集合U={1,2,3,4,5},M={3,5},N={1,4,5},則M∩(∁UN)=( 。
A、{5}
B、{3}
C、{2,3,5}
D、{1,3,4,5}
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.
解答: 解:∵U={1,2,3,4,5},M={3,5},N={1,4,5},
∴∁UN={2,3},M∩(∁UN)={3},
故選:B
點(diǎn)評(píng):本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=-
3
5
,0<α<π.
(1)求tanα的值;
(2)求sin(α+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:關(guān)于x的不等式x2+2ax+4>0,對(duì)一切x∈R恒成立.命題q:拋物線y2=4ax的焦點(diǎn)在(1,0)的左側(cè),若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)生在復(fù)習(xí)函數(shù)內(nèi)容時(shí),得出如下一些結(jié)論:
①函數(shù)f(x)=x+
1
x
在(-∞,0)上有最大值-2;
②函數(shù)f(x)=
1
ln(x+2)
在(-2,+∞)上是減函數(shù);
③?a∈R,使函數(shù)f(x)=
x
(2x+1)(x-a)
為奇函數(shù);
④對(duì)數(shù)函數(shù)具有性質(zhì)“對(duì)任意實(shí)數(shù)x,y,滿足f(xy)=f(x)+f(y).”;
其中正確的結(jié)論是
 
(填寫你認(rèn)為正確的結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:若x>y,則-x<-y,q:?x0>0,(x0+1)e x0≤1,下列命題為真的是( 。
A、p∧q
B、(¬p)∨q
C、(¬p)∨(¬q)
D、p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,a1=2,a3=4
(1)求an;
(2)數(shù)列{bn},若bn=2an,數(shù)列{bn}前n項(xiàng)和記Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx,其中a>0.
(1)若a=3.求曲線f(x)在(1,f(1))處的切線方程;
(2)若f(x)在區(qū)間(1,e)上恰有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c.且0<f(-1)=f(-2)=f(-3)≤3,則( 。
A、c≤3B、3<c≤6
C、6<c≤9D、c>9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(0,-3),且f(4)=f(-2)=5,
(1)求f(x)的解析式
(2)若x∈[0,3],求函數(shù)f(x)對(duì)應(yīng)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案