20.在直角坐標系中,已知圓N的圓心N(3,4),且過點A(0,4).
(1)求圓N的方程;
(2)若過點D(3,6)的直線l被圓N所截得的弦長等于$4\sqrt{2}$,求直線l的斜率.

分析 (1)求出圓的半徑,即可求圓N的方程;
(2)根據(jù)題意得到直線l斜率存在,設(shè)為k,表示出直線l方程,利用點到直線的距離公式表示出圓心到直線l的距離d,根據(jù)r與弦長,利用垂徑定理及勾股定理列出關(guān)于k的方程,求出方程的解得到k的值即可.

解答 解:(1)設(shè)圓N的方程為(x-3)2+(y-4)2=r2
由題意知r=3,∴圓N的方程為(x-3)2+(y-4)2=9;
(2)設(shè)直線l方程為y-6=k(x-3),即kx-y-3k+6=0,
∵圓心(3,4)到直線l的距離d=$\frac{2}{\sqrt{1+{k}^{2}}}$,r=3,弦長為4$\sqrt{2}$,
得${({2\sqrt{2}})^2}={r^2}-{d^2}$,化簡得1+k2=4,即$k=±\sqrt{3}$…(10分)

點評 此題考查了直線與圓相交的性質(zhì),涉及的知識有:點到直線的距離公式,圓的標準方程,垂徑定理,以及勾股定理,熟練掌握公式及定理是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)$f(x)=Asin(ωx+ϕ)(x∈R,A>0,ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示,則ω,ϕ分別為( 。
A.ω=π,ϕ=$\frac{π}{6}$B.$ω=2π,ϕ=\frac{π}{6}$C.$ω=π,ϕ=\frac{π}{3}$D.$ω=2π,ϕ=\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了50人,他們年齡大點頻數(shù)分布及支持“生育二胎”人數(shù)如表:
年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)510151055
支持“生育二胎”4512821
(I)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99%的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計
支持a=c=
不支持b=d=
合計
(Ⅱ)若對年齡在[5,15)的被調(diào)查人中隨機選取兩人進行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?參考數(shù)據(jù):P(K2≥3.841)=0.050,P(K2≥6.635)=0.010,P(K2≥10.828)=0.001  
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.$log_7^{\root{3}{49}}$的值為( 。
A.2B.$\frac{2}{3}$C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知△ABC的外心O滿足$\overrightarrow{AO}$=$\frac{1}{3}$($\overrightarrow{AB}+\overrightarrow{AC}$),則cosA=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知圓方程為x2+y2-2x-9=0,直線方程mx+y+m-2=0,那么直線與圓的位置關(guān)系(  )
A.相交B.相離C.相切D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在鈍角△ABC中,c=$\sqrt{3}$,b=1,B=$\frac{π}{6}$,則△ABC的面積等于( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設(shè)一組數(shù)據(jù)的方差是0.1,將這組數(shù)據(jù)的每個數(shù)據(jù)都乘以10,所得到的一組新數(shù)據(jù)的方差是(  )
A.10B.0.1C.0.001D.100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-$\frac{a(x-1)}{x+1}$.
(1)若函數(shù)f(x)在(1,+∞)上為單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(2)設(shè)m,n∈(0,+∞),且m≠n,求證:$\frac{m-n}{lnm-lnn}$-$\frac{m+n}{2}$<0.

查看答案和解析>>

同步練習冊答案