與直線x+y+3=0平行,且它們之間的距離為3
2
的直線方程為( 。
A、x-y+8=0或x-y-1=0
B、x+y+8=0或x+y-1=0
C、x+y-3=0或x+y+3=0
D、x+y-3=0或x+y+9=0
考點:兩條平行直線間的距離
專題:計算題,直線與圓
分析:設所求直線方程為x+y+m=0,運用兩平行直線的距離公式,解關于m的方程,即可得到所求方程.
解答: 解:設所求直線方程為x+y+m=0,
則由兩平行直線的距離公式可得d=
|m-3|
12+12
=3
2
,
解得m=9或-3.
則所求直線方程為x+y-3=0或x+y+9=0,
故選D.
點評:本題考查兩平行直線的距離公式的運用,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

把一個長、寬之比為3:2的矩形分別繞其長和寬旋轉360°,得到的兩個幾何體的體積之比為( 。
A、1:3B、2:3
C、4:9D、2:1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知每項均大于零的數(shù)列{an}中,首項a1=1且前n項的和Sn滿足Sn
S(n+1)
-Sn+1
Sn
=-2
SnS(n+1)
(n∈N),則a51=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x>3時,求函數(shù)y=
2x2
x-3
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若a2,b2,c2成等差數(shù)列,則角B的范圍為( 。
A、(0,
π
2
B、(0,
π
3
]
C、[
π
3
π
2
D、(
π
3
,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡下列各式.
(1)(
3
2
)-
1
3
×(-
7
6
)0
+8
1
4
×
42
+(
32
×
3
)6
-
(-
2
3
)
2
3
=
 
;
(2)
a3
5b2
5b3
4a3
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b∈R,則“(a-b)a2>0”是“a>b”的( 。
A、必要不充分條件
B、充分不必要條件
C、既不充分也不必要條件
D、充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x與y之間的一組數(shù)據(jù),則y與x的線性回歸方程
y
=
b
x+
a
必過點( 。
x0123
y1357
A、(2,2)
B、(1,2)
C、(1.5,4)
D、(1.5,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
a
-
1
x
(a>0,x>0),若f(x)在[
1
2
,2]上的值域為[
1
2
,2],則a=
 

查看答案和解析>>

同步練習冊答案