2.利用獨(dú)立性檢驗(yàn)來考慮兩個(gè)分類變量X和Y是否有關(guān)系時(shí),通過查閱下表來確定斷言“X和Y有關(guān)系”的可信度.如果k>5.024,那么就有把握認(rèn)為“X和Y有關(guān)系”的百分比為97.5%.
P(K2≥k)0.500.400.250.150.10
k0.4550.7081.3232.0722.706
P(K2≥k)0.050.0250.010.0050.001
k3.8415.0246.6357.87910.828

分析 根據(jù)所給的觀測(cè)值,與所給的臨界值表中的數(shù)據(jù)進(jìn)行比較,而在觀測(cè)值表中對(duì)應(yīng)于5.024的是0.025,有1-0.025的把握認(rèn)為“X和Y有關(guān)系”,得到結(jié)果.

解答 解:∵k>5.024,而在觀測(cè)值表中對(duì)應(yīng)于5.024的是0.025,
∴有1-0.025=97.5%的把握認(rèn)為“X和Y有關(guān)系”.
故答案為:97.5%.

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,是一個(gè)基礎(chǔ)題,這種題目出現(xiàn)的機(jī)會(huì)比較小,但是一旦出現(xiàn),就是我們必得分的題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=(x2+2)lnx,g(x)=2x2+ax,a∈R
(1)證明:f(x)在(1,+∞)上是增函數(shù);
(2)設(shè)F(x)=f(x)-g(x),當(dāng)x∈[1,+∞)時(shí),F(xiàn)(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知sin(π-α)=log27$\frac{1}{9},且α∈(-\frac{π}{2},0)$,則tanα=$-\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=sinx-$\frac{2}{5π}$x零點(diǎn)的個(gè)數(shù)是( 。
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個(gè)封閉立方體的六個(gè)面積各標(biāo)出A,B,C,D,E,F(xiàn)這六個(gè)字母,現(xiàn)放成如圖所示三種不同的位置,所看見的表面上的字母已標(biāo)明,則字母A,B,C對(duì)面的字母分別是(  )
A.D,E,F(xiàn)B.F,D,EC.E,F(xiàn),DD.E,D,F(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.富華中學(xué)的一個(gè)文學(xué)興趣小組中,三位同學(xué)張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進(jìn)行性格研究,并且他們選擇的名家各不相同.三位同學(xué)一起來找圖書管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉?duì)象.劉老師猜了三句話:“①?gòu)埐┰囱芯康氖巧勘葋;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不?huì)研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對(duì)了一句,據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是(  )
A.曹雪芹、莎士比亞、雨果B.雨果、莎士比亞、曹雪芹
C.莎士比亞、雨果、曹雪芹D.曹雪芹、雨果、莎士比亞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡(jiǎn)稱“六藝”.某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)的競(jìng)賽.現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐.規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為a,b,c(a>b>c,且a,b,c∈N*);選手最后得分為各場(chǎng)得分之和.在六場(chǎng)比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場(chǎng)比賽中獲得第一名,則下列說法正確的是(  )
A.每場(chǎng)比賽第一名得分a為4B.甲可能有一場(chǎng)比賽獲得第二名
C.乙有四場(chǎng)比賽獲得第三名D.丙可能有一場(chǎng)比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,$∠A=\frac{2π}{3}$,$a=\sqrt{3}c$,則$\frac{a}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}=\frac{1}{2}{n^2}+\frac{9}{2}n,(n∈{N^*})$
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${c_n}=\frac{1}{{(2{a_n}-9)(2{a_n}-7)}}$,數(shù)列{cn}的前n項(xiàng)和為Tn,求使不等式${T_n}>\frac{k}{2017}$對(duì)一切n∈N*都成立的正整數(shù)k的最大值;
(3)設(shè)$f(n)=\left\{\begin{array}{l}{a_n},(n=2k-1,k∈{N^*})\\ 3{a_n}-13,(n=2k,k∈{N^*})\end{array}\right.$,是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案