4.若復(fù)數(shù)z滿足z(4-i)=5+3i(i為虛數(shù)單位),則$\overline z$為( 。
A.1-iB.-1+iC.1+iD.-1-i

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由共軛復(fù)數(shù)的概念得答案.

解答 解:由z(4-i)=5+3i,得
$z=\frac{5+3i}{4-i}=\frac{(5+3i)(4+i)}{(4-i)(4+i)}=\frac{17+17i}{17}=1+i$,
∴$\overline{z}=1-i$.
故選:A.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=2CD,BC=$\sqrt{3}$CD,△APB是等邊三角形,且側(cè)面APB⊥底面ABCD,E,F(xiàn)分別是PC,AB的中點(diǎn).
(1)求證:PA∥平面DEF.
(2)求平面DEF與平面PCD所成的二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個單位后,得到f(x)的圖象,則(  )
A.f(x)=-sin2xB.f(x)的圖象關(guān)于x=-$\frac{π}{3}$對稱
C.f($\frac{7π}{3}$)=$\frac{1}{2}$D.f(x)的圖象關(guān)于($\frac{π}{12}$,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=sin(ln$\frac{x-1}{x+1}$)的圖象大致為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若a,b∈{-1,1,2,3},則直線ax+by=0與圓x2+(y+2)2=2有交點(diǎn)的概率為( 。
A.$\frac{3}{8}$B.$\frac{11}{16}$C.$\frac{5}{8}$D.$\frac{5}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.定積分$\int_{-1}^1{[\sqrt{1-{x^2}}+cos(2x-\frac{π}{2})]}dx$的值為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合M={x|16-x2≥0},集合N={y|y=|x|+1},則M∩N=(  )
A.{x|-2≤x≤4}B.{x|x≥1}C.{x|1≤x≤4}D.{x|x≥-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=ln(4-x)的定義域為( 。
A.(-∞,4]B.(-∞,4)C.(0,4]D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若 x,y 滿足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥0\end{array}\right.$,則 z=y-2x 的最大值為(  )
A.8B.4C.1D.2

查看答案和解析>>

同步練習(xí)冊答案